Hydrodynamics of binary fluid phase segregation

被引:7
作者
Bastea, S
Esposito, R
Lebowitz, JL
Marra, R
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Aquila, Dipartimento Matemat, Rome, Italy
[3] Ctr Ric Linceo Beniamino Segre, Rome, Italy
[4] Rutgers State Univ, Dept Phys, New Brunswick, NJ 08903 USA
[5] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
[6] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy
[7] Univ Roma Tor Vergata, Unita INFM, I-00173 Rome, Italy
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.89.235701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting with the Vlasov-Boltzmann equation for a binary fluid mixture, we derive an equation for the velocity field u when the system is segregated into two phases (at low temperatures) with a sharp interface between them. u satisfies the incompressible Navier-Stokes equations together with a jump boundary condition for the pressure across the interface which, in turn, moves with a velocity given by the normal component of u. Numerical simulations of the Vlasov-Boltzmann equations for shear flows parallel and perpendicular to the interface in a phase segregated mixture support this analysis. We expect similar behavior in real fluid mixtures.
引用
收藏
页码:1 / 235701
页数:4
相关论文
共 18 条
[1]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[2]  
[Anonymous], HYDRODYNAMIC HYDROMA
[3]   Surface-directed spinodal decomposition in binary fluid mixtures [J].
Bastea, S ;
Puri, S ;
Lebowitz, JL .
PHYSICAL REVIEW E, 2001, 63 (04) :415131-415137
[4]   Binary fluids with long range segregating interaction. I: Derivation of kinetic and hydrodynamic equations [J].
Bastea, S ;
Esposito, R ;
Lebowitz, JL ;
Marra, R .
JOURNAL OF STATISTICAL PHYSICS, 2000, 101 (5-6) :1087-1136
[5]   Spinodal decomposition in binary gases [J].
Bastea, S ;
Lebowitz, JL .
PHYSICAL REVIEW LETTERS, 1997, 78 (18) :3499-3502
[6]  
CARLEN E, IN PRESS
[7]  
Cercignani C, 1988, BOLTZMANN EQUATION I
[8]   INCOMPRESSIBLE NAVIER-STOKES AND EULER LIMITS OF THE BOLTZMANN-EQUATION [J].
DEMASI, A ;
ESPOSITO, R ;
LEBOWITZ, JL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (08) :1189-1214
[9]   Comment on "Hydrodynamic coarsening of binary fluids" [J].
Furukawa, H .
PHYSICAL REVIEW LETTERS, 2000, 85 (20) :4407-4407
[10]  
Harrison WJ, 1908, P LOND MATH SOC, V6, P396