The amino-terminal region of the fusion peptide of influenza virus hemagglutinin HA2 inserts into sodium dodecyl sulfate micelle with residues 16-18 at the aqueous boundary at acidic pH - Oligomerization and the conformational flexibility

被引:44
作者
Chang, DK [1 ]
Cheng, SF [1 ]
Trivedi, VD [1 ]
Yang, SH [1 ]
机构
[1] Acad Sinica, Inst Chem, Taipei 11529, Taiwan
关键词
D O I
10.1074/jbc.M907148199
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The conformation and interactions with membrane mimics of the NH2-terminal fragment 1-25 of HA2, HA2(1-25), of influenza virus were studied by spectroscopic methods. Secondary structure analysis of circular dichroism data revealed 45% helix for the peptide at pH 5.0. Tryptophan fluorescence quenching by acrylamide and NMR experiments established that the Trp(14) is in side the vesicular interior and residues 16-18 are at the micellar aqueous boundary. NBD fluorescence enhancement of the NH2-terminal labeled fluorophore on the vesicle bound peptide indicated that the NH2 terminus of the fusion peptide was located in the hydrophobic region of the lipid bilayer. No significant change in insertion depth was observed between pH 5.0 and 7.4. Collectively, these spectroscopic measurements pointed to an equilibrium between helix and non-helix conformations, with helix being the dominant form, for the segment in the micellar interior. The conformational transition may be facilitated by the high content of glycine, a conformationally flexible amino acid, within the fusion peptide sequence. Self-association of the 25-mer peptide was observed in the N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine SDS-gel electrophoresis experiments, Incorporating the NMR signal attenuation, fluorescence, and gel electrophoresis data, a working model for the organization of the fusion peptide in membrane bilayers was proposed.
引用
收藏
页码:19150 / 19158
页数:9
相关论文
共 45 条
[1]   PH-DEPENDENCE OF ESR-SPECTRA FROM NITROXIDE PROBES IN LECITHIN DISPERSIONS [J].
BARRATT, MD ;
LAGGNER, P .
BIOCHIMICA ET BIOPHYSICA ACTA, 1974, 363 (01) :127-133
[2]   The orientation of nisin in membranes [J].
Breukink, E ;
van Kraaij, C ;
van Dalen, A ;
Demel, RA ;
Siezen, RJ ;
de Kruijff, B ;
Kuipers, OP .
BIOCHEMISTRY, 1998, 37 (22) :8153-8162
[3]   STRUCTURE OF INFLUENZA HEMAGGLUTININ AT THE PH OF MEMBRANE-FUSION [J].
BULLOUGH, PA ;
HUGHSON, FM ;
SKEHEL, JJ ;
WILEY, DC .
NATURE, 1994, 371 (6492) :37-43
[4]   A SPRING-LOADED MECHANISM FOR THE CONFORMATIONAL CHANGE OF INFLUENZA HEMAGGLUTININ [J].
CARR, CM ;
KIM, PS .
CELL, 1993, 73 (04) :823-832
[5]   Determination of the equilibrium micelle-inserting position of the fusion peptide of gp41 of human immunodeficiency virus type 1 at amino acid resolution by exchange broadening of amide proton resonances [J].
Chang, DK ;
Cheng, SF .
JOURNAL OF BIOMOLECULAR NMR, 1998, 12 (04) :549-552
[6]   Biophysical characterization of the structure of the amino-terminal region of gp41 of HIV-1 - Implications on viral fusion mechanism [J].
Chang, DK ;
Cheng, SF ;
Trivedi, VD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (09) :5299-5309
[7]   The amino-terminal fusion domain peptide of human immunodeficiency virus type 1 gp41 inserts into the sodium dodecyl sulfate micelle primarily as helix with a conserved glycine at the micelle-water interface [J].
Chang, DK ;
Cheng, SF ;
Chien, WJ .
JOURNAL OF VIROLOGY, 1997, 71 (09) :6593-6602
[8]   INTERACTION OF INFLUENZA HEMAGGLUTININ AMINO-TERMINAL PEPTIDE WITH PHOSPHOLIPID-VESICLES - A FLUORESCENCE STUDY [J].
CLAGUE, MJ ;
KNUTSON, JR ;
BLUMENTHAL, R ;
HERRMANN, A .
BIOCHEMISTRY, 1991, 30 (22) :5491-5497
[9]   ANALYSES OF THE ANTIGENICITY OF INFLUENZA HEMAGGLUTININ AT THE PH OPTIMUM FOR VIRUS-MEDIATED MEMBRANE-FUSION [J].
DANIELS, RS ;
DOUGLAS, AR ;
SKEHEL, JJ ;
WILEY, DC .
JOURNAL OF GENERAL VIROLOGY, 1983, 64 (AUG) :1657-1662
[10]   H+-induced membrane insertion of influenza virus hemagglutinin involves the HA2 amino-terminal fusion peptide but not the coiled coil region [J].
Durrer, P ;
Galli, C ;
Hoenke, S ;
Corti, C ;
Gluck, R ;
Vorherr, T ;
Brunner, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (23) :13417-13421