Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles

被引:68
|
作者
Meng, Jinhao [1 ]
Cai, Lei [2 ,3 ]
Stroe, Daniel-Ioan [4 ]
Luo, Guangzhao [1 ]
Sui, Xin [4 ]
Teodorescu, Remus [4 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710072, Shaanxi, Peoples R China
[2] Xian Univ Technol, Fac Comp Sci & Engn, Xian 710048, Shaanxi, Peoples R China
[3] Shaanxi Key Lab Network Comp & Secur Technol, Xian 710048, Shaanxi, Peoples R China
[4] Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark
关键词
State of health estimation; Partial voltage range; Lithium-ion battery; Electric vehicle; Non-dominated sorting genetic algorithm; REMAINING USEFUL LIFE; ONLINE ESTIMATION; CAPACITY ESTIMATION; KALMAN FILTER; DEGRADATION; MANAGEMENT; SYSTEM; MODEL; WIND;
D O I
10.1016/j.energy.2019.07.127
中图分类号
O414.1 [热力学];
学科分类号
摘要
Lithium-ion (Li-ion) batteries have become the dominant choice for powering the Electric Vehicles (EVs). In order to guarantee the safety and reliability of the battery pack in an EV, the Battery Management System (BMS) needs information regarding the battery State of Health (SOH). This paper estimates the battery SOH from the optimal partial charging voltage profiles, which is a straightforward and effective solution for the EV applications. In order to further improve the accuracy and efficiency of the SOH estimation, a novel method optimizing single and multiple voltage ranges during the EV charging process is proposed in this paper. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is applied to automatically select the optimal multiple voltage ranges, while the grid search technique is used to find the optimal single voltage range. The non-dominated solutions from NSGA-II enable the SOH estimation at different battery charging stages, which gives more freedom to the implementation of the proposed method. Three Nickel Manganese Cobalt (NMC)-based batteries from EV, which have been aged under calendar ageing for 360 days, are used to validate the proposed method. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1054 / 1062
页数:9
相关论文
共 50 条
  • [41] Refined lithium-ion battery state of health estimation with charging segment adjustment
    Zheng, Kun
    Meng, Jinhao
    Yang, Zhipeng
    Zhou, Feifan
    Yang, Kun
    Song, Zhengxiang
    APPLIED ENERGY, 2024, 375
  • [42] Comparison-Transfer Learning Based State-of-Health Estimation for Lithium-Ion Battery
    Liu, Wei
    Gao, Songchen
    Yan, Wendi
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (04)
  • [43] A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model
    Gu, Xinyu
    See, K. W.
    Li, Penghua
    Shan, Kangheng
    Wang, Yunpeng
    Zhao, Liang
    Lim, Kai Chin
    Zhang, Neng
    ENERGY, 2023, 262
  • [44] An Enhanced Data-Driven Model for Lithium-Ion Battery State-of-Health Estimation with Optimized Features and Prior Knowledge
    Huang, Huanyang
    Meng, Jinhao
    Wang, Yuhong
    Cai, Lei
    Peng, Jichang
    Wu, Ji
    Xiao, Qian
    Liu, Tianqi
    Teodorescu, Remus
    AUTOMOTIVE INNOVATION, 2022, 5 (02) : 134 - 145
  • [45] A Unified Deep Learning Optimization Paradigm for Lithium-Ion Battery State-of-Health Estimation
    Cai, Lei
    Cui, Ningmin
    Jin, Haiyan
    Meng, Jinhao
    Yang, Shengxiang
    Peng, Jichang
    Zhao, Xinchao
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2024, 39 (01) : 589 - 600
  • [46] State-of-Health Estimation for Lithium-Ion Batteries Based on Decoupled Dynamic Characteristic of Constant-Voltage Charging Current
    Yang, Jufeng
    Cai, Yingfeng
    Mi, Chunting Chris
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (02) : 2070 - 2079
  • [47] An Enhanced Data-Driven Model for Lithium-Ion Battery State-of-Health Estimation with Optimized Features and Prior Knowledge
    Huanyang Huang
    Jinhao Meng
    Yuhong Wang
    Lei Cai
    Jichang Peng
    Ji Wu
    Qian Xiao
    Tianqi Liu
    Remus Teodorescu
    Automotive Innovation, 2022, 5 : 134 - 145
  • [48] Health Prognosis With Optimized Feature Selection for Lithium-Ion Battery in Electric Vehicle Applications
    Wu, Ji
    Cui, Xuchen
    Zhang, Hui
    Lin, Mingqiang
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (11) : 12646 - 12655
  • [49] Exploiting the Electrochemical Impedance Spectroscopy Frequency Profiles for State-of-Health Predication of Lithium-Ion Battery
    Al-Hiyali, Mohammed Isam
    Kannan, Ramani
    Alharthi, Yahya Z.
    Shutari, Hussein
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (09)
  • [50] Accounting for Lithium-Ion Battery Degradation in Electric Vehicle Charging Optimization
    Hoke, Anderson
    Brissette, Alexander
    Smith, Kandler
    Pratt, Annabelle
    Maksimovic, Dragan
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2014, 2 (03) : 691 - 700