Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles

被引:69
|
作者
Meng, Jinhao [1 ]
Cai, Lei [2 ,3 ]
Stroe, Daniel-Ioan [4 ]
Luo, Guangzhao [1 ]
Sui, Xin [4 ]
Teodorescu, Remus [4 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710072, Shaanxi, Peoples R China
[2] Xian Univ Technol, Fac Comp Sci & Engn, Xian 710048, Shaanxi, Peoples R China
[3] Shaanxi Key Lab Network Comp & Secur Technol, Xian 710048, Shaanxi, Peoples R China
[4] Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark
关键词
State of health estimation; Partial voltage range; Lithium-ion battery; Electric vehicle; Non-dominated sorting genetic algorithm; REMAINING USEFUL LIFE; ONLINE ESTIMATION; CAPACITY ESTIMATION; KALMAN FILTER; DEGRADATION; MANAGEMENT; SYSTEM; MODEL; WIND;
D O I
10.1016/j.energy.2019.07.127
中图分类号
O414.1 [热力学];
学科分类号
摘要
Lithium-ion (Li-ion) batteries have become the dominant choice for powering the Electric Vehicles (EVs). In order to guarantee the safety and reliability of the battery pack in an EV, the Battery Management System (BMS) needs information regarding the battery State of Health (SOH). This paper estimates the battery SOH from the optimal partial charging voltage profiles, which is a straightforward and effective solution for the EV applications. In order to further improve the accuracy and efficiency of the SOH estimation, a novel method optimizing single and multiple voltage ranges during the EV charging process is proposed in this paper. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is applied to automatically select the optimal multiple voltage ranges, while the grid search technique is used to find the optimal single voltage range. The non-dominated solutions from NSGA-II enable the SOH estimation at different battery charging stages, which gives more freedom to the implementation of the proposed method. Three Nickel Manganese Cobalt (NMC)-based batteries from EV, which have been aged under calendar ageing for 360 days, are used to validate the proposed method. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1054 / 1062
页数:9
相关论文
共 50 条
  • [31] Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data
    Lin, Chuanping
    Xu, Jun
    Mei, Xuesong
    ENERGY STORAGE MATERIALS, 2023, 54 : 85 - 97
  • [32] State-of-health estimation of lithium-ion battery based on fractional impedance model and interval capacity
    Yang, Qingxia
    Xu, Jun
    Li, Xiuqing
    Xu, Dan
    Cao, Binggang
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 119
  • [33] A comprehensively optimized lithium-ion battery state-of-health estimator based on Local Coulomb Counting Curve
    Huang, Huanyang
    Meng, Jinhao
    Wang, Yuhong
    Feng, Fei
    Cai, Lei
    Peng, Jichang
    Liu, Tianqi
    APPLIED ENERGY, 2022, 322
  • [34] A feature extraction approach for state-of-health estimation of lithium-ion battery
    Piao, Changhao
    Sun, Rongli
    Chen, Junsheng
    Liu, Mingjie
    Wang, Zhen
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [35] State-of-health estimation for lithium-ion batteries based on partial charging segment and stacking model fusion
    Xu, Jinli
    Liu, Baolei
    Zhang, Guangya
    Zhu, Jiwei
    ENERGY SCIENCE & ENGINEERING, 2023, 11 (01) : 383 - 397
  • [36] State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter
    Bi, Jun
    Zhang, Ting
    Yu, Haiyang
    Kang, Yanqiong
    APPLIED ENERGY, 2016, 182 : 558 - 568
  • [37] Optimized charging of lithium-ion battery for electric vehicles: Adaptive multistage constant current-constant voltage charging strategy
    Li, Yunjian
    Li, Kuining
    Xie, Yi
    Liu, Jiangyan
    Fu, Chunyun
    Liu, Bin
    RENEWABLE ENERGY, 2020, 146 : 2688 - 2699
  • [38] An Enhanced Data-Driven Model for Lithium-Ion Battery State-of-Health Estimation with Optimized Features and Prior Knowledge
    Huang, Huanyang
    Meng, Jinhao
    Wang, Yuhong
    Cai, Lei
    Peng, Jichang
    Wu, Ji
    Xiao, Qian
    Liu, Tianqi
    Teodorescu, Remus
    AUTOMOTIVE INNOVATION, 2022, 5 (02) : 134 - 145
  • [39] Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks
    He, Zhiwei
    Gao, Mingyu
    Ma, Guojin
    Liu, Yuanyuan
    Chen, Sanxin
    JOURNAL OF POWER SOURCES, 2014, 267 : 576 - 583
  • [40] A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model
    Gu, Xinyu
    See, K. W.
    Li, Penghua
    Shan, Kangheng
    Wang, Yunpeng
    Zhao, Liang
    Lim, Kai Chin
    Zhang, Neng
    ENERGY, 2023, 262