ROBUST STATISTICAL SHAPE ANALYSIS BASED ON THE TANGENT SHAPE SPACE

被引:0
作者
Abboud, Michel [1 ,2 ]
Benzinou, Abdesslam [1 ]
Nasreddine, Kamal [1 ]
Jazar, Mustapha [2 ]
机构
[1] UEB, ENIB, UMR CNRS Lab STICC 6285, F-29238 Brest, France
[2] Lebanese Univ, LaMA Liban, Tripoli, Lebanon
来源
2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2015年
关键词
Shape analysis; robust statistics; elastic metric; shape space; Tangent PCA; OUTLIER DETECTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose and develop a robust formulation for statistical shape analysis based on an elastic metric between closed planar curves. The proposed solution is founded on robustifying the inverse exponential map that links the preshape space to the tangent shape space relatively to a reference point. Applying this robust transition map, we obtain a rectified version of the shape database cleaned from aberrant points and more adequate for statistical analysis. Hence, we derive a new tangent PCA which we call a Robust Tangent PCA (RTPCA) where the main modes reflect the variability of the data with a resistance to outliers that may affect a classical analysis. We illustrate the capability of our approach with an application on the Kimia-HAND database.
引用
收藏
页码:3520 / 3524
页数:5
相关论文
共 16 条
  • [1] [Anonymous], ICIP 14
  • [2] [Anonymous], 1998, STAT SHAPE ANAL
  • [3] High breakdown estimators for principal components: the projection-pursuit approach revisited
    Croux, C
    Ruiz-Gazen, A
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 95 (01) : 206 - 226
  • [4] Robust statistics in data analysis - A review basic concepts
    Daszykowski, M.
    Kaczmarek, K.
    Heyden, Y. Vander
    Walczak, B.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2007, 85 (02) : 203 - 219
  • [5] De la Torre F, 2001, EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL I, PROCEEDINGS, P362, DOI 10.1109/ICCV.2001.937541
  • [6] Outlier detection in multivariate analytical chemical data
    Egan, WJ
    Mogan, SL
    [J]. ANALYTICAL CHEMISTRY, 1998, 70 (11) : 2372 - 2379
  • [7] Fletcher PT, 2008, PROC CVPR IEEE, P3153
  • [8] Hawkins Douglas M, 1980, IDENTIFICATION OUTLI, V11
  • [9] A survey of outlier detection methodologies
    Hodge V.J.
    Austin J.
    [J]. Artificial Intelligence Review, 2004, 22 (2) : 85 - 126
  • [10] Joshi Shantanu H, 2007, Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, V2007, P1