Multiple solutions for a generalised Schrodinger problem with "concave-convex" nonlinearities

被引:3
作者
Santos, Andrelino V. [1 ]
Santos Junior, Joao R. [1 ]
机构
[1] Univ Fed Para, Fac Matemat, Inst Ciencias Exatas & Nat, Ave Augusto Correa 01, BR-66075110 Belem, PA, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2019年 / 70卷 / 05期
关键词
Generalised Schrodinger elliptic problems; Multiplicity of solutions; Variational methods; SOLITON-SOLUTIONS; EQUATIONS; EXISTENCE; PLASMA;
D O I
10.1007/s00033-019-1200-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of generalised Schrodinger elliptic problems involving concave-convex and other types of nonlinearities is studied. A reasonable overview about the set of solutions is provided when the parameters involved in the equation assume different real values.
引用
收藏
页数:19
相关论文
共 50 条
[31]   Quasilinear elliptic problems with concave-convex nonlinearities [J].
Carvalho, M. L. M. ;
da Silva, Edcarlos D. ;
Goulart, C. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (06)
[32]   Multiplicity Results of a Nonlocal Problem Involving Concave-Convex Nonlinearities [J].
Daoues, A. ;
Hammami, A. ;
Saoudi, K. .
MATHEMATICAL NOTES, 2021, 109 (1-2) :192-207
[33]   Periodic solutions for the coupled wave equations with concave-convex nonlinearities [J].
Liu, Jianhua ;
Deng, Jiayu ;
Ji, Shuguan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 445
[34]   MULTIPLICITY OF SOLUTIONS FOR DOUBLE PHASE EQUATIONS WITH CONCAVE-CONVEX NONLINEARITIES [J].
Joe, Woo Jin ;
Kim, Seong Jin ;
Kim, Yun-Ho ;
Oh, Min Wook .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (06) :2921-2946
[35]   INFINITELY MANY SOLUTIONS FOR A SCHRODINGER-POISSON SYSTEM WITH CONCAVE AND CONVEX NONLINEARITIES [J].
Sun, Mingzheng ;
Su, Jiabao ;
Zhao, Leiga .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (01) :427-440
[36]   MULTIPLE POSITIVE SOLUTIONS FOR BIHARMONIC EQUATION OF KIRCHHOFF TYPE INVOLVING CONCAVE-CONVEX NONLINEARITIES [J].
Meng, Fengjuan ;
Zhang, Fubao ;
Zhang, Yuanyuan .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, :1-15
[37]   Infinitely many solutions for quasilinear Schrödinger equation with concave-convex nonlinearities [J].
Chen, Lijuan ;
Chen, Caisheng ;
Chen, Qiang ;
Wei, Yunfeng .
BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
[38]   Sign-changing solutions for a class of Schrodinger-Bopp-Podolsky system with concave-convex nonlinearities [J].
Zhang, Ziheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
[39]   Solutions of a Schrödinger-Kirchhoff-Poisson system with concave-convex nonlinearities [J].
Soluki, M. ;
Rasouli, S. H. ;
Afrouzi, G. A. .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (02) :1233-1244