Multiple solutions for a generalised Schrodinger problem with "concave-convex" nonlinearities

被引:3
作者
Santos, Andrelino V. [1 ]
Santos Junior, Joao R. [1 ]
机构
[1] Univ Fed Para, Fac Matemat, Inst Ciencias Exatas & Nat, Ave Augusto Correa 01, BR-66075110 Belem, PA, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2019年 / 70卷 / 05期
关键词
Generalised Schrodinger elliptic problems; Multiplicity of solutions; Variational methods; SOLITON-SOLUTIONS; EQUATIONS; EXISTENCE; PLASMA;
D O I
10.1007/s00033-019-1200-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of generalised Schrodinger elliptic problems involving concave-convex and other types of nonlinearities is studied. A reasonable overview about the set of solutions is provided when the parameters involved in the equation assume different real values.
引用
收藏
页数:19
相关论文
共 24 条
[1]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[2]   ON AN ELLIPTIC EQUATION WITH CONCAVE AND CONVEX NONLINEARITIES [J].
BARTSCH, T ;
WILLEM, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (11) :3555-3561
[3]   Soliton solutions for quasilinear Schrodinger equations with critical growth [J].
Bezerra do O, Joao M. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) :722-744
[4]  
Borovskii A. V., 1993, Journal of Experimental and Theoretical Physics, V77, P562
[5]   RELATIVISTIC AND PONDEROMOTIVE SELF-FOCUSING OF A LASER-BEAM IN A RADIALLY INHOMOGENEOUS-PLASMA .1. PARAXIAL APPROXIMATION [J].
BRANDI, HS ;
MANUS, C ;
MAINFRAY, G ;
LEHNER, T ;
BONNAUD, G .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (10) :3539-3550
[6]   NECESSARY AND SUFFICIENT CONDITIONS FOR SELF-FOCUSING OF SHORT ULTRAINTENSE LASER-PULSE IN UNDERDENSE PLASMA [J].
CHEN, XL ;
SUDAN, RN .
PHYSICAL REVIEW LETTERS, 1993, 70 (14) :2082-2085
[7]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[8]   Global existence of small solutions to a relativistic nonlinear Schrodinger equation [J].
deBouard, A ;
Hayashi, N ;
Saut, JC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (01) :73-105
[9]   Positive soliton solutions for generalized quasilinear Schrodinger equations with critical growth [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Yan, Shusen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (01) :115-147
[10]   Soliton solutions for quasilinear Schrodinger equations:: The critical exponential case [J].
do O, Jodo M. B. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (12) :3357-3372