Polytopal realizations of generalized associahedra

被引:116
作者
Chapoton, F
Fomin, S
Zelevinsky, A
机构
[1] Univ Quebec, LACIM, Montreal, PQ H3C 3P8, Canada
[2] Northeastern Univ, Dept Math, Boston, MA 02115 USA
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2002年 / 45卷 / 04期
关键词
D O I
10.4153/CMB-2002-054-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove polytopality of the generalized associahedra introduced in [5].
引用
收藏
页码:537 / 566
页数:30
相关论文
共 15 条
[1]   ON THE SELF-LINKING OF KNOTS [J].
BOTT, R ;
TAUBES, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5247-5287
[2]  
Bourbaki N., 1968, Actualites Scientifiques et Industrielles, V1337
[3]  
DEVADOSS SL, MATHQA0102166
[4]  
FOMIN S, IN PRESS J AM MATH S
[5]  
Gelfand I. M., 1994, Mathematics Theory & Applications, DOI DOI 10.1007/978-0-8176-4771-1
[6]  
Kac V.G, 1990, INFINITE DIMENSIONAL, Vthird, DOI DOI 10.1017/CBO9780511626234
[7]   THE ASSOCIAHEDRON AND TRIANGULATIONS OF THE N-GON [J].
LEE, CW .
EUROPEAN JOURNAL OF COMBINATORICS, 1989, 10 (06) :551-560
[8]  
MARKL M, 1999, CONT MATH, V227, P235, DOI DOI 10.1090/C0NM/227/03259.MR1665469
[9]   Non-crossing partitions for classical reflection groups [J].
Reiner, V .
DISCRETE MATHEMATICS, 1997, 177 (1-3) :195-222
[10]   Noncrossing partitions [J].
Simion, R .
DISCRETE MATHEMATICS, 2000, 217 (1-3) :367-409