Numerical investigation of flow over obstacles on a backward-facing step

被引:2
|
作者
Bayraktar, Seyfettin [1 ]
机构
[1] Yildiz Tech Univ, Dept Naval Architecture & Marine Engn, TR-34349 Istanbul, Turkey
来源
JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY | 2021年 / 36卷 / 02期
关键词
Backward-facing step; Separation; Turbulence; Recirculation; Obstacle; HEAT-TRANSFER CHARACTERISTICS; REYNOLDS-NUMBER; FORCED-CONVECTION; OMEGA; ADJACENT; CHANNEL; MODELS; LAYER;
D O I
10.17341/gazimmfd.646073
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present study, the effects of the square, circular and equilateral triangular cross-sectional obstacles placed on a backward-facing step on the flow-field were investigated numerically. Assumed to be fully turbulent, three-dimensional, steady and incompressible flow was solved by modified k-omega turbulence model. Obtained results were exhibited in terms of non-dimensional friction and non-dimensional pressure coefficients in addition to non-dimensional reattachment length. Apart from the geometric shapes of the obstacles, the influence of their heights (h) on the relevant parameters were presented for H/h=0.125, 0.25, 0.5 and 1 by dimensionalizing with the step height (H). Results obtained for the backward-facing step without any obstacles were compared with the experimental data of Driver and Seegmiller, 1985 to show the accuracy of the model. It was shown that in comparison with the step without the obstacles, not only the existence of the obstacles but their cross-sectional shapes also affect friction and pressure coefficients and the reattachment length. Regardless of the cross-sectional geometry of the obstacles, it was detected that the existence of the obstacles increases the length of the recirculation, however, the longest regions were obtained when equilateral triangular cross-sectional one was used. It was revealed that the effect of the height of the obstacle on the detached flow region is quite low for H/h=0.25.
引用
收藏
页码:1145 / 1158
页数:14
相关论文
共 50 条
  • [1] Numerical Investigation of Hydrothermal Characteristics in Backward-Facing Step Channel with Obstacles
    Alabdaly, Ibrahim K.
    Hatem, Saad M.
    Ahmed, Mohammed A.
    Abed, Tareq Hamad
    Al-Amir, Qusay Rasheed
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2025, 43 (01) : 309 - 318
  • [2] Numerical Investigation of Fluid Flow and Heat Transfer Characteristics over Double Backward-Facing Step with Obstacles
    Mohankumar, Vishnu
    Prakash, Karaiyan Arul
    HEAT TRANSFER ENGINEERING, 2024, 45 (09) : 779 - 799
  • [3] Turbulent flow over a swept backward-facing step
    Kaltenbach, HJ
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2004, 23 (03) : 501 - 518
  • [4] A NUMERICAL STUDY OF FLOW OVER A CONFINED BACKWARD-FACING STEP
    BARTON, IE
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1995, 21 (08) : 653 - 665
  • [5] Numerical Investigation of Nanofluid Flow over a Backward Facing Step
    Wu, Wen-Chung
    Kumar, Ankit
    AEROSPACE, 2022, 9 (09)
  • [6] Investigation of a turbulent convective buoyant flow of sodium over a backward-facing step
    Schumm, Tobias
    Frohnapfel, Bettina
    Marocco, Luca
    HEAT AND MASS TRANSFER, 2018, 54 (08) : 2533 - 2543
  • [7] Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step
    Togun, Hussein
    Safaei, M. R.
    Sadri, Rad
    Kazi, S. N.
    Badarudin, A.
    Hooman, K.
    Sadeghinezhad, E.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 239 : 153 - 170
  • [8] Mixed Convection of Pulsating Ferrofluid Flow Over a Backward-Facing Step
    Selimefendigil, Fatih
    Oztop, Hakan F.
    Chamkha, Ali J.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF MECHANICAL ENGINEERING, 2019, 43 (04) : 593 - 612
  • [9] NUMERICAL INVESTIGATION OF MIXED CONVECTIVE FLOW THROUGH A VERTICAL DUCT WITH A BACKWARD-FACING STEP USING NANOFLUIDS
    Al-aswadi, A. A.
    Mohammed, H. A.
    Shuaib, N. H.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2010, VOL 7, PTS A AND B, 2012, : 1453 - 1463
  • [10] Turbulent flow over a rough backward-facing step
    Wu, Yanhua
    Ren, Huiying
    Tang, Hui
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2013, 44 : 155 - 169