Conformal field theory and vertex operator algebras

被引:0
作者
Runkel, Ingo [1 ]
机构
[1] Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, Germany
来源
OPERATOR ALGEBRAS AND MATHEMATICAL PHYSICS | 2019年 / 80卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this short lecture, axioms for scale covariant and for conformal field theory in two dimensions are presented, some of their consequences are explored, and the connection to Z-graded vertex algebras and to vertex operator algebras is made.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
[11]   Vertex algebras in higher dimensions and globally conformal invariant quantum field theory [J].
Nikolov, NM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (02) :283-322
[12]   ON THE REPRESENTATION OF OPERATOR-ALGEBRAS OF THE QUANTUM CONFORMAL FIELD-THEORY [J].
JURIEV, DV .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (02) :492-496
[13]   Vertex Algebras in Higher Dimensions and Globally Conformal Invariant Quantum Field Theory [J].
Nikolay M. Nikolov .
Communications in Mathematical Physics, 2005, 253 :283-322
[14]   Unitary Vertex Algebras and Wightman Conformal Field Theories [J].
Raymond, Christopher ;
Tanimoto, Yoh ;
Tener, James E. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 395 (01) :299-330
[15]   Unitary Vertex Algebras and Wightman Conformal Field Theories [J].
Christopher Raymond ;
Yoh Tanimoto ;
James E. Tener .
Communications in Mathematical Physics, 2022, 395 :299-330
[16]   Local conformal nets arising from framed vertex operator algebras [J].
Kawahigashi, Yasuyuki ;
Longo, Roberto .
ADVANCES IN MATHEMATICS, 2006, 206 (02) :729-751
[17]   Some General Results on Conformal Embeddings of Affine Vertex Operator Algebras [J].
Dražen Adamović ;
Ozren Perše .
Algebras and Representation Theory, 2013, 16 :51-64
[18]   The varieties of semi-conformal vectors of affine vertex operator algebras [J].
Chu, Yanjun ;
Lin, Zongzhu .
JOURNAL OF ALGEBRA, 2018, 515 :77-101
[19]   The classification of semi-conformal structures of Heisenberg vertex operator algebras [J].
Chu, Yanjun ;
Lin, Zongzhu .
JOURNAL OF GEOMETRY AND PHYSICS, 2024, 200
[20]   Some General Results on Conformal Embeddings of Affine Vertex Operator Algebras [J].
Adamovic, Drazen ;
Perse, Ozren .
ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (01) :51-64