Efficient Deep Belief Network Based Hyperspectral Image Classification

被引:1
作者
Mughees, Atif [1 ]
Tao, Linmi [1 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Comp Vis & Graph Lab, Beijing 100084, Peoples R China
来源
IMAGE AND GRAPHICS (ICIG 2017), PT III | 2017年 / 10668卷
关键词
Hyperspectral image classification; Segmentation; Deep belief network;
D O I
10.1007/978-3-319-71598-8_31
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Hyperspectral Image (HSI) classification plays a key role remote sensing field. Recently, deep learning has demonstrated its effectiveness in HSI Classification field. This paper presents a spectral-spatial HSI classification technique established on the deep learning based deep belief network (DBN) for deep and abstract feature extraction and adaptive boundary adjustment based segmentation. Proposed approach focuses on integrating the deep learning based spectral features and segmentation based spatial features into a framework for improved performance. Specifically, first the deep DBN model is exploited as a spectral feature extraction based classifier to extract the deep spectral features. Second, spatial contextual features are obtained by utilizing effective adaptive boundary adjustment based segmentation technique. Finally, maximum voting based criteria is operated to integrate the results of extracted spectral and spatial information for improved HSI classification. In general, exploiting spectral features from DBN process and spatial features from segmentation and integration of spectral and spatial information by maximum voting based criteria, has a substantial effect on the performance of HSI classification. Experimental performance on real and widely used hyperspectral data sets with different contexts and resolutions demonstrates the accuracy of the proposed technique and performance is comparable to several recently proposed HSI classification techniques.
引用
收藏
页码:347 / 357
页数:11
相关论文
共 34 条
  • [31] Deep Learning for Remote Sensing Data A technical tutorial on the state of the art
    Zhang, Liangpei
    Zhang, Lefei
    Du, Bo
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2016, 4 (02) : 22 - 40
  • [32] Learning Conditional Random Fields for Classification of Hyperspectral Images
    Zhong, Ping
    Wang, Runsheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (07) : 1890 - 1907
  • [33] Extreme Learning Machine With Composite Kernels for Hyperspectral Image Classification
    Zhou, Yicong
    Peng, Jiangtao
    Chen, C. L. Philip
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2351 - 2360
  • [34] Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data
    Zhu, Zhe
    Woodcock, Curtis E.
    Rogan, John
    Kellndorfer, Josef
    [J]. REMOTE SENSING OF ENVIRONMENT, 2012, 117 : 72 - 82