The equations of non-homogeneous asymmetric fluids: an iterative approach

被引:9
作者
Conca, C
Gormaz, R
Ortega-Torres, EE
Rojas-Medar, MA
机构
[1] Univ Chile, Dept Ingn Matemat, Fac Ciencias Fis & Matemat, Santiago, Chile
[2] Univ Chile, Dept Ingn Matemat, UMR 2071 CNRS, Santiago, Chile
[3] Univ Chile, Ctr Modelamiento Matemat, UMR 2071 CNRS, Santiago, Chile
[4] Univ Antofagasta, Dept Matemat, Antofagasta, Chile
[5] Univ Estadual Campinas, IMECC, Dept Matemat Aplicada, BR-13081970 Campinas, SP, Brazil
关键词
asymmetric fluid; Galerkin method; strong solutions;
D O I
10.1002/mma.331
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and uniqueness of strong solutions for the equations of non-homogeneous asymmetric fluids. We use an iterative approach and we prove that the approximate solutions constructed by this method converge to the strong solution of these equations. We also give bounds for the rate of convergence. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:1251 / 1280
页数:30
相关论文
共 21 条
[1]   ON THE EXISTENCE AND REGULARITY OF THE SOLUTION OF STOKES PROBLEM IN ARBITRARY DIMENSION [J].
AMROUCHE, C ;
GIRAULT, V .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1991, 67 (05) :171-175
[2]  
[Anonymous], MATH RES
[3]  
ANTONTSEV SN, 1990, BOUNDARY VALUE PROBL
[4]  
Boldrini J. L., 1992, MAT CONT, V3, P1
[5]  
BOLDRINI JL, 1996, RAIRO-MATH MODEL NUM, V30, P123
[6]  
CONDIFF D, 1964, PHYSICS FLUIDS A, V11, P842
[8]  
LADYZHENSKAYA O, 1988, TRANSLATION MATH MON, V23
[9]  
LADYZHENSKAYA O., 1978, J SOVIET MATH, V9, P697, DOI DOI 10.1007/BF01085325
[10]  
Ladyzhenskaya O. A., 1969, MATH THEORY VISCOUS