Altered purinergic receptor-Ca2+ signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells

被引:69
|
作者
Azimi, Iman [1 ,7 ]
Beilby, Hannah [1 ]
Davis, Felicity M. [1 ]
Marcial, Daneth L. [1 ]
Kenny, Paraic A. [2 ]
Thompson, Erik W. [3 ,4 ,5 ,6 ]
Roberts-Thomson, Sarah J. [1 ]
Monteith, Gregory R. [1 ,7 ]
机构
[1] Univ Queensland, Sch Pharm, Brisbane, Qld, Australia
[2] Gunderson Med Fdn, Kabara Canc Res Inst, La Crosse, WI USA
[3] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Kelvin Grove, Qld, Australia
[4] Queensland Univ Technol, Sch Biomed Sci, Kelvin Grove, Qld, Australia
[5] Univ Melbourne, Dept Surg, St Vincents Hosp, Fitzroy, Vic 3065, Australia
[6] St Vincents Inst Med Res, 41 Victoria Parade, Fitzroy, Vic 3065, Australia
[7] Univ Queensland, Mater Res Inst, Translat Res Inst, Brisbane, Qld, Australia
基金
英国医学研究理事会;
关键词
Breast cancer; Hypoxia; Calcium; Epithelial-mesenchymal transition; Purinergic receptors; P2Y(6) RECEPTOR; PROTEIN-KINASE; MIGRATION; ACTIVATION; CALCIUM; ATP; METASTASIS; MECHANISMS; INVASION; SUBTYPE;
D O I
10.1016/j.molonc.2015.09.006
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Hypoxia is a feature of the microenvironment of many cancers and can trigger epithelialmesenchymal transition (EMT), a process by which cells acquire a more invasive phenotype with enriched survival. A remodeling of adenosine 5'-triphosphate (ATP)-induced Ca2+ signaling via purinergic receptors is associated with epidermal growth factor (EGF)induced EMT in MDA-MB-468 breast cancer cells. Here, we assessed ATP -mediated Ca2+ signaling in a model of hypoxia-induced EMT in MDA-MB-468 cells. Like EGF, hypoxia treatment (1% O-2) was also associated with a significant reduction in the sensitivity of MDA-MB-468 cells to ATP (EC50 of 0.5 mu M for normoxic cells versus EC50 of 5.8 mu M for hypoxic cells). Assessment of mRNA levels of a panel of P2X and P2Y purinergic receptors following hypoxia revealed a change in levels of a suite of purinergic receptors. P2X4, P2X5, P2X7, P2Y1 and P2Y11 mRNAs decreased with hypoxia, whereas P2Y6 mRNA increased. Up regulation of P2Y6 was a common feature of both growth factor- and hypoxia-induced models of EMT. P2Y6 levels were also significantly increased in basal-like breast tumors compared to other subtypes and breast cancer patients with higher P2Y6 levels showed reduced overall survival rates. P2Y6 siRNA-mediated silencing and the P2Y6 pharmacological inhibitor MRS2578 reduced hypoxia-induced vimentin protein expression in MDA-MB468 cells. P2Y6 inhibition also reduced the migration of mesenchymal-like MDA-MB-231 breast cancer cells. The up-regulation of P2Y6 appears to be a common feature of the mesenchymal phenotype of breast cancer cells and inhibition of this receptor may represent a novel therapeutic target in breast cancer metastasis. (C) 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:166 / 178
页数:13
相关论文
共 50 条
  • [1] Paeoniflorin prevents hypoxia-induced epithelial-mesenchymal transition in human breast cancer cells
    Zhou, Zhenyu
    Wang, Shunchang
    Song, Caijuan
    Hu, Zhuang
    ONCOTARGETS AND THERAPY, 2016, 9 : 2511 - 2518
  • [2] Gli-1 is crucial for hypoxia-induced epithelial-mesenchymal transition and invasion of breast cancer
    Lei, Jianjun
    Fan, Lin
    Wei, Guangbing
    Chen, Xin
    Duan, Wanxing
    Xu, Qinhong
    Sheng, Wei
    Wang, Kang
    Li, Xuqi
    TUMOR BIOLOGY, 2015, 36 (04) : 3119 - 3126
  • [3] Scutellarin inhibits hypoxia-induced epithelial-mesenchymal transition in bladder cancer cells
    Lv, Wei-Ling
    Liu, Qian
    An, Ji-Hong
    Song, Xiao-Yong
    JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (12) : 23169 - 23175
  • [4] Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition
    Uzunhan, Yurdaguel
    Bernard, Olivier
    Marchant, Dominique
    Dard, Nicolas
    Vanneaux, Valerie
    Larghero, Jerome
    Gille, Thomas
    Clerici, Christine
    Valeyre, Dominique
    Nunes, Hilario
    Boncoeur, Emilie
    Planes, Carole
    AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2016, 310 (05) : L439 - L451
  • [5] Remodeling of Purinergic Receptor-Mediated Ca2+ Signaling as a Consequence of EGF-Induced Epithelial-Mesenchymal Transition in Breast Cancer Cells
    Davis, Felicity M.
    Kenny, Paraic A.
    Soo, Eliza T-L
    van Denderen, Bryce J. W.
    Thompson, Erik W.
    Cabot, Peter J.
    Parat, Marie-Odile
    Roberts-Thomson, Sarah J.
    Monteith, Gregory R.
    PLOS ONE, 2011, 6 (08):
  • [6] Curcumin inhibits hypoxia-induced epithelial-mesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathway
    Cao, Lei
    Xiao, Xue
    Lei, Jianjun
    Duan, Wanxing
    Ma, Qingyong
    Li, Wei
    ONCOLOGY REPORTS, 2016, 35 (06) : 3728 - 3734
  • [7] Glucose-Regulated Protein 78 Signaling Regulates Hypoxia-Induced Epithelial-Mesenchymal Transition in A549 Cells
    Sun, Ling-Ling
    Chen, Chang-Ming
    Zhang, Jue
    Wang, Jing
    Yang, Cai-Zhi
    Lin, Li-Zhu
    FRONTIERS IN ONCOLOGY, 2019, 9
  • [8] Autophagy contributes to hypoxia-induced epithelial to mesenchymal transition of endometrial epithelial cells in endometriosis
    Liu, Hengwei
    Du, Yu
    Zhang, Zhibing
    Lv, Liqun
    Xiong, Wenqian
    Zhang, Ling
    Li, Na
    He, Haitang
    Li, Qi
    Liu, Yi
    BIOLOGY OF REPRODUCTION, 2018, 99 (05) : 968 - 981
  • [9] Bisecting N-Acetylglucosamine Structures Inhibit Hypoxia-Induced Epithelial-Mesenchymal Transition in Breast Cancer Cells
    Tan, Zengqi
    Wang, Chenxing
    Li, Xiang
    Guan, Feng
    FRONTIERS IN PHYSIOLOGY, 2018, 9
  • [10] Dexamethasone inhibits hypoxia-induced epithelial-mesenchymal transition in colon cancer
    Kim, Jung Ho
    Hwang, You-Jin
    Han, Sang Hoon
    Lee, Young Eun
    Kim, Saerom
    Kim, Yoon Jae
    Cho, Jae Hee
    Kwon, Kwang An
    Kim, Ju Hyun
    Kim, Se-Hee
    WORLD JOURNAL OF GASTROENTEROLOGY, 2015, 21 (34) : 9887 - 9899