Global stabilization of fractional-order memristor-based neural networks with incommensurate orders and multiple time-varying delays: a positive-system-based approach

被引:25
|
作者
Jia, Jia [1 ,2 ]
Wang, Fei [3 ]
Zeng, Zhigang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China
[2] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Stabilization; Fractional-order; Memristor-based neural networks; Incommensurate orders; Positive system; MITTAG-LEFFLER STABILITY; PROJECTIVE SYNCHRONIZATION; QUASI-SYNCHRONIZATION;
D O I
10.1007/s11071-021-06403-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper addresses global stabilization of fractional-order memristor-based neural networks (FMNNs) with incommensurate orders and multiple time-varying delays (MTDs), where the time delay functions are not necessarily bounded. First, without assuming that time delay functions are bounded, the asymptotical stability condition is given for fractional-order linear positive system with incommensurate orders and MTDs. Then, comparison principle for such a system is established. By virtue of two kinds of vector Lyapunov functions (absolute-value-function-based and square-function-based vector Lyapunov functions), stability condition of fractional-order linear positive system and comparison principle, two stabilization criteria are derived and the equivalence between them is illustrated. In comparison with the reported criterion, the criteria derived in this paper are less conservative, since they allow controller parameters to satisfy weaker algebraic conditions. Lastly, numerical examples are displayed to validate the availability of the controller and correctness of the stabilization criteria.
引用
收藏
页码:2303 / 2329
页数:27
相关论文
共 50 条
  • [21] Global finite-time stabilization of memristor-based neural networks with time-varying delays via hybrid control
    Song, Yinfang
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 896 - 903
  • [22] Stability analysis of memristor-based time-delay fractional-order neural networks
    Liu, Weizhen
    Jiang, Minghui
    Yan, Meng
    NEUROCOMPUTING, 2019, 323 : 117 - 127
  • [23] Exponential Lagrangian stability and stabilization of memristor-based neural networks with unbounded time-varying delays
    Xianhe Meng
    Xian Zhang
    Yantao Wang
    Computational and Applied Mathematics, 2022, 41
  • [24] Exponential Lagrangian stability and stabilization of memristor-based neural networks with unbounded time-varying delays
    Meng, Xianhe
    Zhang, Xian
    Wang, Yantao
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (05)
  • [25] Finite-time synchronization for fractional-order memristor-based neural networks with discontinuous activations and multiple delays
    Ding, Dawei
    You, Ziruo
    Hu, Yongbing
    Yang, Zongli
    Ding, Lianghui
    MODERN PHYSICS LETTERS B, 2020, 34 (15):
  • [26] Dissipativity Analysis of Memristor-Based Fractional-Order Hybrid BAM Neural Networks with Time Delays
    Liu, Weizhen
    Jiang, Minghui
    Fei, Kaifang
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2019, 20 (7-8) : 773 - 785
  • [27] Asymptotic and Finite-Time Synchronization of Fractional-Order Memristor-Based Inertial Neural Networks with Time-Varying Delay
    Sun, Yeguo
    Liu, Yihong
    Liu, Lei
    FRACTAL AND FRACTIONAL, 2022, 6 (07)
  • [28] Adaptive synchronization of fractional-order memristor-based neural networks with time delay
    Haibo Bao
    Ju H. Park
    Jinde Cao
    Nonlinear Dynamics, 2015, 82 : 1343 - 1354
  • [29] Global exponential stability of inertial memristor-based neural networks with time-varying delays and impulses
    Zhang, Wei
    Huang, Tingwen
    He, Xing
    Li, Chuandong
    NEURAL NETWORKS, 2017, 95 : 102 - 109
  • [30] H∞ state estimation of stochastic memristor-based neural networks with time-varying delays
    Bao, Haibo
    Cao, Jinde
    Kurths, Juergen
    Alsaedi, Ahmed
    Ahmad, Bashir
    NEURAL NETWORKS, 2018, 99 : 79 - 91