Pullback attractor for random chemostat model driven by colored noise

被引:9
作者
Zhang, Xiaofeng [1 ]
Yuan, Rong [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Random chemostat model; Ornstein-Uhlenbeck process; Colored noise; Random dynamical system; Pullback attractor;
D O I
10.1016/j.aml.2020.106833
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the theory of the Ornstein-Uhlenbeck process and random dynamical system, in this paper, a random chemostat model driven by colored noise is considered. First, we prove the existence and uniqueness of the global positive solution for random chemostat system, and we also state some conclusions about the existence of random pullback attractor. Finally, some conclusions are given. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:5
相关论文
共 15 条
  • [1] Arnold L., 1998, Springer Monographs in Mathematics
  • [2] Caraballo T., 2016, Applied nonautonomous and random dynamical systems
  • [3] MODELING AND ANALYSIS OF RANDOM AND STOCHASTIC INPUT FLOWS IN THE CHEMOSTAT MODEL
    Caraballo, Tomas
    Garrido-Atienza, Maria-Jose
    Lopez-de-la-Cruz, Javier
    Rapaport, Alain
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (08): : 3591 - 3614
  • [4] CUNNINGHAM A., 1983, MATH MICROBIOLOGY, P77
  • [5] NONLINEAR REGULATOR PROBLEM FOR A MODEL OF BIOLOGICAL WASTE TREATMENT
    DANS, G
    KOKOTOVIC, PV
    GOTTLIEB, D
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (04) : 341 - +
  • [6] MICROBIAL COMPETITION
    FREDRICKSON, AG
    STEPHANOPOULOS, G
    [J]. SCIENCE, 1981, 213 (4511) : 972 - 979
  • [7] DESCRIPTION OF THE CHEMOSTAT
    NOVICK, A
    SZILARD, L
    [J]. SCIENCE, 1950, 112 (2920) : 715 - 716
  • [8] Smith HL., 1995, The theory of the chemostat
  • [9] On the theory of the Brownian motion
    Uhlenbeck, GE
    Ornstein, LS
    [J]. PHYSICAL REVIEW, 1930, 36 (05): : 0823 - 0841
  • [10] COEXISTENCE IN CHEMOSTAT-LIKE MODELS
    WALTMAN, P
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1990, 20 (04) : 777 - 807