On the projective Finsler metrizability and the integrability of Rapcsak equation

被引:1
作者
Milkovszki, Tamas [1 ]
Muzsnay, Zoltan [1 ]
机构
[1] Univ Debrecen, Inst Math, Egyet Ter 1, H-4032 Debrecen, Hungary
关键词
Euler-Lagrange equation; metrizability; projective metrizability; geodesics; spray; formal integrability; INVERSE PROBLEM; CALCULUS; SPRAYS; FORMS;
D O I
10.21136/CMJ.2017.0010-16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A. Rapcsak obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsak system and the extended Rapcsak system, by using the Spencer version of the Cartan-Kahler theorem. We also consider the extended Rapcsak system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences determining the 2-acyclicity of the symbol of the corresponding differential operator. Therefore the system is not integrable and higher order obstruction exists.
引用
收藏
页码:469 / 495
页数:27
相关论文
共 20 条
[1]  
Bacso S., 2010, ACTA MATH ACAD PAED, V26, P171
[2]  
Bryant R.L., 1991, MATH SCI RES I PUBLI
[3]   Invariant Metrizability and Projective Metrizability on Lie Groups and Homogeneous Spaces [J].
Bucataru, Ioan ;
Milkovszki, Tamas ;
Muzsnay, Zoltan .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) :4567-4580
[4]   PROJECTIVE AND FINSLER METRIZABILITY: PARAMETERIZATION-RIGIDITY OF THE GEODESICS [J].
Bucataru, Ioan ;
Muzsnay, Zoltan .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (09)
[5]   Projective Metrizability and Formal Integrability [J].
Bucataru, Ioan ;
Muzsnay, Zoltan .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
[6]   Hilbert forms for a Finsler metrizable projective class of sprays [J].
Crampin, M. ;
Mestdag, T. ;
Saunders, D. J. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (01) :63-79
[7]   The multiplier approach to the projective Finsler metrizability problem [J].
Crampin, M. ;
Mestdag, T. ;
Saunders, D. J. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2012, 30 (06) :604-621
[8]  
Crampin M, 2007, PUBL MATH-DEBRECEN, V70, P319
[9]  
Frlicher A., 1956, PROC KOND NED AKAD, V18, P338
[10]  
Grifone J., 2000, APPL SPENCER THEORY