Disulfide Bond Formation System in Escherichia coli

被引:66
作者
Inaba, Kenji [1 ]
机构
[1] Kyushu Univ, Med Inst Bioregulat, Post Genome Sci Ctr, Div Prot Chem,Higashi Ku, Fukuoka 8128582, Japan
关键词
crystal structure; disulfide bond; DsbB; DsbD; E; coli periplasm; IN-VIVO; CRYSTAL-STRUCTURE; REDOX SWITCH; ELECTRON-TRANSPORT; STRUCTURAL BASIS; PROTEIN DSBD; ISOMERASE; OXIDOREDUCTASE; IDENTIFICATION; THIOREDOXIN;
D O I
10.1093/jb/mvp102
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The biological kingdoms have evolved elaborate systems that ensure the catalysis of protein disulfide bond (dsb) formation in the cell. Coexisting in the periplasm of Escherichia coli are the DsbADsbB disulfide-introducing and DsbCDsbD disulfide-isomerizing pathways, which promote the oxidative folding of secreted proteins. Recent structural studies of DsbB have illuminated conformational dynamics involved in the effective oxidation of the extremely reduction-prone oxidase, DsbA, as well as the structure of the reaction centre involved in protein Dsb formation de novo in conjunction with ubiquinone. Extensive genetic and biochemical analysis has recently provided insight into how DsbD transports electrons from cytosolic thioredoxin to periplasmic DsbC. To a great extent, the molecular mechanisms of the Dsb enzyme system in E. coli have been elucidated, and are applicable to the study of protein disulfide formation systems in other organisms.
引用
收藏
页码:591 / 597
页数:7
相关论文
共 60 条
[1]   Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria [J].
Åslund, F ;
Berndt, KD ;
Holmgren, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (49) :30780-30786
[2]   Oxidative protein folding is driven by the electron transport system [J].
Bader, M ;
Muse, W ;
Ballou, DP ;
Gassner, C ;
Bardwell, JCA .
CELL, 1999, 98 (02) :217-227
[3]   Turning a disulfide isomerase into an oxidase: DsbC mutants that imitate DsbA [J].
Bader, MW ;
Hiniker, A ;
Regeimbal, J ;
Goldstone, D ;
Haebel, PW ;
Riemer, J ;
Metcalf, P ;
Bardwell, JCA .
EMBO JOURNAL, 2001, 20 (07) :1555-1562
[4]   IDENTIFICATION OF A PROTEIN REQUIRED FOR DISULFIDE BOND FORMATION INVIVO [J].
BARDWELL, JCA ;
MCGOVERN, K ;
BECKWITH, J .
CELL, 1991, 67 (03) :581-589
[5]   The Genomics of disulfide bonding and protein stabilization in thermophiles [J].
Beeby, M ;
O'Connor, BD ;
Ryttersgaard, C ;
Boutz, DR ;
Perry, LJ ;
Yeates, TO .
PLOS BIOLOGY, 2005, 3 (09) :1549-1558
[6]   In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG [J].
Bessette, PH ;
Cotto, JJ ;
Gilbert, HF ;
Georgiou, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (12) :7784-7792
[7]   The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress [J].
Chakravarthi, S ;
Jessop, CE ;
Bulleid, NJ .
EMBO REPORTS, 2006, 7 (03) :271-275
[8]   Redox-active cysteines of a membrane electron transporter DsbD show dual compartment accessibility [J].
Cho, Seung-Hyun ;
Porat, Amir ;
Ye, Jiqing ;
Beckwith, Jon .
EMBO JOURNAL, 2007, 26 (15) :3509-3520
[9]   Two Snapshots of Electron Transport across the Membrane INSIGHTS INTO THE STRUCTURE AND FUNCTION OF DsbD [J].
Cho, Seung-Hyun ;
Beckwith, Jon .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (17) :11416-11424
[10]   Structural basis of the redox switch in the OxyR transcription factor [J].
Choi, HJ ;
Kim, SJ ;
Mukhopadhyay, P ;
Cho, S ;
Woo, JR ;
Storz, G ;
Ryu, SE .
CELL, 2001, 105 (01) :103-113