Density profiles, dynamics, and condensation in the ZRP conditioned on an atypical current

被引:58
作者
Hirschberg, Ori [1 ,2 ]
Mukamel, David [1 ]
Schuetz, Gunter M. [3 ,4 ]
机构
[1] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[2] Technion Israel Inst Technol, Dept Phys, IL-3200003 Haifa, Israel
[3] Forschungszentrum Julich, Inst Complex Syst Theoret Soft Matter & Biophy 2, D-52425 Julich, Germany
[4] Univ Bonn, Interdisziplinares Zentrum Komplexe Syst, D-53119 Bonn, Germany
基金
以色列科学基金会;
关键词
stochastic particle dynamics (theory); zero-range processes; ZERO-RANGE PROCESS; LARGE DEVIATIONS; ENSEMBLES; SYMMETRY;
D O I
10.1088/1742-5468/2015/11/P11023
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the asymmetric zero-range process (ZRP) with L sites and open boundaries, conditioned to carry an atypical current. Using a generalized Doob h-transform we compute explicitly the transition rates of an effective process for which the conditioned dynamics are typical. This effective process is a zero-range process with renormalized hopping rates, which are space dependent even when the original rates are constant. This leads to non-trivial density profiles in the steady state of the conditioned dynamics, and, under generic conditions on the jump rates of the unconditioned ZRP, to an intriguing supercritical bulk region where condensates can grow. These results provide a microscopic perspective on macroscopic fluctuation theory (MFT) for the weakly asymmetric case: it turns out that the predictions of MFT remain valid in the non-rigorous limit of finite asymmetry. In addition, the microscopic results yield the correct scaling factor for the asymmetry that MFT cannot predict.
引用
收藏
页数:28
相关论文
共 39 条
[21]   Dynamics of Instantaneous Condensation in the ZRP Conditioned on an Atypical Current [J].
Harris, Rosemary J. ;
Popkov, Vladislav ;
Schuetz, Gunter M. .
ENTROPY, 2013, 15 (11) :5065-5083
[22]   Spontaneous Symmetry Breaking at the Fluctuating Level [J].
Hurtado, Pablo I. ;
Garrido, Pedro L. .
PHYSICAL REVIEW LETTERS, 2011, 107 (18)
[23]  
Jack RL, 2010, PROG THEOR PHYS SUPP, P304
[24]   A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics [J].
Lebowitz, JL ;
Spohn, H .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (1-2) :333-365
[25]   Zero-range process with open boundaries [J].
Levine, E ;
Mukamel, D ;
Schütz, GM .
JOURNAL OF STATISTICAL PHYSICS, 2005, 120 (5-6) :759-778
[26]   Quantum operators in classical probability theory .1. ''Quantum spin'' techniques and the exclusion model of diffusion [J].
Lloyd, P ;
Sudbury, A ;
Donnelly, P .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1996, 61 (02) :205-221
[27]   A CONVEXITY PROPERTY IN THEORY OF RANDOM-VARIABLES DEFINED ON A FINITE MARKOV-CHAIN [J].
MILLER, HD .
ANNALS OF MATHEMATICAL STATISTICS, 1961, 32 :1260-&
[28]   Transition Probabilities and Dynamic Structure Function in the ASEP Conditioned on Strong Flux [J].
Popkov, V. ;
Schuetz, G. M. .
JOURNAL OF STATISTICAL PHYSICS, 2011, 142 (03) :627-639
[29]   ASEP on a ring conditioned on enhanced flux [J].
Popkov, Vladislav ;
Schuetz, Gunter M. ;
Simon, Damien .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
[30]   On the range of validity of the fluctuation theorem for stochastic Markovian dynamics [J].
Rakos, A. ;
Harris, R. J. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,