Density profiles, dynamics, and condensation in the ZRP conditioned on an atypical current

被引:58
作者
Hirschberg, Ori [1 ,2 ]
Mukamel, David [1 ]
Schuetz, Gunter M. [3 ,4 ]
机构
[1] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[2] Technion Israel Inst Technol, Dept Phys, IL-3200003 Haifa, Israel
[3] Forschungszentrum Julich, Inst Complex Syst Theoret Soft Matter & Biophy 2, D-52425 Julich, Germany
[4] Univ Bonn, Interdisziplinares Zentrum Komplexe Syst, D-53119 Bonn, Germany
基金
以色列科学基金会;
关键词
stochastic particle dynamics (theory); zero-range processes; ZERO-RANGE PROCESS; LARGE DEVIATIONS; ENSEMBLES; SYMMETRY;
D O I
10.1088/1742-5468/2015/11/P11023
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the asymmetric zero-range process (ZRP) with L sites and open boundaries, conditioned to carry an atypical current. Using a generalized Doob h-transform we compute explicitly the transition rates of an effective process for which the conditioned dynamics are typical. This effective process is a zero-range process with renormalized hopping rates, which are space dependent even when the original rates are constant. This leads to non-trivial density profiles in the steady state of the conditioned dynamics, and, under generic conditions on the jump rates of the unconditioned ZRP, to an intriguing supercritical bulk region where condensates can grow. These results provide a microscopic perspective on macroscopic fluctuation theory (MFT) for the weakly asymmetric case: it turns out that the predictions of MFT remain valid in the non-rigorous limit of finite asymmetry. In addition, the microscopic results yield the correct scaling factor for the asymmetry that MFT cannot predict.
引用
收藏
页数:28
相关论文
共 39 条
[1]  
[Anonymous], 2013, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes
[2]   Antishocks in the ASEP with open boundaries conditioned on low current [J].
Belitsky, V. ;
Schuetz, G. M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (29)
[3]   Microscopic Structure of Shocks and Antishocks in the ASEP Conditioned on Low Current [J].
Belitsky, V. ;
Schuetz, G. M. .
JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (01) :93-111
[4]   Macroscopic fluctuation theory for stationary non-equilibrium states [J].
Bertini, L ;
De Sole, A ;
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (3-4) :635-675
[5]   Macroscopic fluctuation theory [J].
Bertini, Lorenzo ;
De Sole, Alberto ;
Gabrielli, Davide ;
Jona-Lasinio, Giovanni ;
Landim, Claudio .
REVIEWS OF MODERN PHYSICS, 2015, 87 (02) :593-636
[6]   Nonequilibrium steady states of matrix-product form: a solver's guide [J].
Blythe, R. A. ;
Evans, M. R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (46) :R333-R441
[7]   Distribution of current in nonequilibrium diffusive systems and phase transitions [J].
Bodineau, T ;
Derrida, B .
PHYSICAL REVIEW E, 2005, 72 (06)
[8]   Current large deviations for asymmetric exclusion processes with open boundaries [J].
Bodineau, T ;
Derrida, B .
JOURNAL OF STATISTICAL PHYSICS, 2006, 123 (02) :277-300
[9]   Current fluctuations in nonequilibrium diffusive systems: An additivity principle [J].
Bodineau, T ;
Derrida, B .
PHYSICAL REVIEW LETTERS, 2004, 92 (18) :180601-1
[10]   Cumulants and large deviations of the current through non-equilibrium steady states [J].
Bodineau, Thierry ;
Derrida, Bernard .
COMPTES RENDUS PHYSIQUE, 2007, 8 (5-6) :540-555