Polynomial interior-point algorithms for P*(κ) horizontal linear complementarity problem

被引:43
作者
Wang, G. Q. [1 ,2 ]
Bai, Y. Q. [2 ]
机构
[1] Shanghai Univ Engn Sci, Coll Adv Vocat Technol, Shanghai 200437, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
P-*(kappa) horizontal linear complementarity problem; Kernel function; Interior-point methods; Large-and small-update methods; Iteration bounds; NEWTON METHOD; CONVERGENCE;
D O I
10.1016/j.cam.2009.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a class of polynomial interior-point algorithms for P-*(kappa) horizontal linear complementarity problem based on a new parametric kernel function, with parameters p epsilon vertical bar 0, 1 vertical bar and alpha >= 1, are presented. The proposed parametric kernel function is not exponentially convex and also not strongly convex like the usual kernel functions, and has a finite value at the boundary of the feasible region. It is used both for determining the search directions and for measuring the distance between the given iterate and the mu-center for the algorithm. The currently best known iteration bounds for the algorithm with large-and small-update methods are derived, namely, 0((1 +2 kappa) root n log n log n/epsilon) and 0((1 + 2 kappa) root n log n/epsilon), respectively, which reduce the gap between the practical behavior of the algorithms and their theoretical performance results. Numerical tests demonstrate the behavior of the algorithms for different results of the parameters p.sigma and theta. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:248 / 263
页数:16
相关论文
共 24 条
[1]   An O(√nL) iteration primal-dual path-following method, based on wide neighborhoods and large updates, for monotone LCP [J].
Ai, WB ;
Zhang, SZ .
SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (02) :400-417
[2]   Equivalence between different formulations of the linear complementarity problem [J].
Anitescu, M ;
Lesaja, G ;
Potra, FA .
OPTIMIZATION METHODS & SOFTWARE, 1997, 7 (3-4) :265-290
[3]  
Bai YQ, 2008, PAC J OPTIM, V4, P19
[4]   A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization [J].
Bai, YQ ;
El Ghami, M ;
Roos, C .
SIAM JOURNAL ON OPTIMIZATION, 2004, 15 (01) :101-128
[5]   A new efficient large-update primal-dual interior-point method based on a finite barrier [J].
Bai, YQ ;
El Ghami, M ;
Roos, C .
SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (03) :766-782
[6]   Global convergence enhancement of classical linesearch interior point methods for MCPs [J].
Bellavia, S ;
Morini, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 151 (01) :171-199
[7]   Complementarity problems [J].
Billups, SC ;
Murty, KG .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 124 (1-2) :303-318
[8]   A new large-update interior point algorithm for P*(κ) linear complementarity problems [J].
Cho, Gyeong-Mi .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 216 (01) :265-278
[9]  
Cottle R.W., 1992, The Linear Complementarity Problem
[10]   A polynomial-time algorithm for linear optimization based on a new class of kernel functions [J].
El Ghami, M. ;
Ivanov, I. ;
Melissen, J. B. M. ;
Roos, C. ;
Steihaug, T. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 224 (02) :500-513