Free-Energy Landscape of RNA Hairpins Constructed via Dihedral Angle Principal Component Analysis

被引:54
作者
Riccardi, Laura [1 ]
Nguyen, Phuong H. [1 ]
Stock, Gerhard [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, D-60438 Frankfurt, Germany
关键词
EXCHANGE MOLECULAR-DYNAMICS; CONFORMATIONAL DYNAMICS; NMR-SPECTROSCOPY; TETRALOOP; PROTEINS; SIMULATIONS; FORCE; CONVERGENCE; MECHANISM; PEPTIDES;
D O I
10.1021/jp9076036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To systematically construct a low-dimensional free-energy landscape of RNA systems from a classical molecular dynamics simulation, various versions of the principal component analysis (PCA) are compared: the cPCA using the Cartesian coordinates of all atoms, the dPCA using the sine/cosine-transformed six backbone dihedral angles as well as the glycosidic torsional angle chi and the pseudorotational angle P, the aPCA which ignores the circularity of the 6 + 2 dihedral angles of the RNA, and the dPCA(eta 0), which approximates the 6 backbone dihedral angles by 2 pseudotorsional angles eta and theta. As representative examples, a 10-nucleotide UUCG hairpin and the 36-nucleotide segment SL1 of the psi site of HIV-1 are studied by classical molecular dynamics simulation, using the Amber all-atom force field and explicit solvent. It is shown that the conformational heterogeneity of the RNA hairpins can only be resolved by an angular PCA Such as the dPCA but not by the cPCA using Cartesian coordinates. Apart from possible artifacts due to the Coupling of overall and internal motion, this is because the details of hydrogen bonding and stacking interactions but also of global structural rearrangements of the RNA are better discriminated by dihedral angles. In line with recent experiments, it is found that the free energy landscape of RNA hairpins is quite rugged and contains various metastable conformational states which may serve as an intermediate for unfolding.
引用
收藏
页码:16660 / 16668
页数:9
相关论文
共 84 条
[1]   Construction of the free energy landscape of biomolecules via dihedral angle principal component analysis [J].
Altis, Alexandros ;
Otten, Moritz ;
Nguyen, Phuong H. ;
Hegger, Rainer ;
Stock, Gerhard .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (24)
[2]   Dihedral angle principal component analysis of molecular dynamics simulations [J].
Altis, Alexandros ;
Nguyen, Phuong H. ;
Hegger, Rainer ;
Stock, Gerhard .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (24)
[3]   ESSENTIAL DYNAMICS OF PROTEINS [J].
AMADEI, A ;
LINSSEN, ABM ;
BERENDSEN, HJC .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :412-425
[4]  
[Anonymous], 1996, STAT ANAL CIRCULAR D
[5]  
[Anonymous], 1983, EUR J BIOCHEM, V131, P5
[6]  
[Anonymous], 1988, PRINCIPLES NUCL ACID
[7]   From topographies to dynamics on multidimensional potential energy surfaces of atomic clusters [J].
Ball, KD ;
Berry, RS ;
Kunz, RE ;
Li, FY ;
Proykova, A ;
Wales, DJ .
SCIENCE, 1996, 271 (5251) :963-966
[8]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[9]   Structural insight into RNA hairpin folding intermediates [J].
Bowman, Gregory R. ;
Huang, Xuhui ;
Yao, Yuan ;
Sun, Jian ;
Carlsson, Gunnar ;
Guibas, Leonidas J. ;
Pande, Vijay S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (30) :9676-+
[10]   A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat [J].
Cheatham, TE ;
Cieplak, P ;
Kollman, PA .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 1999, 16 (04) :845-862