Finite-thickness effects on the Rayleigh-Taylor instability in accelerated elastic solids

被引:21
|
作者
Piriz, S. A. [1 ,2 ]
Piriz, A. R. [1 ,2 ]
Tahir, N. A. [3 ]
机构
[1] Univ Castilla La Mancha, ETSII, Inst Invest Energet, E-13071 Ciudad Real, Spain
[2] Univ Castilla La Mancha, CYTEMA, E-13071 Ciudad Real, Spain
[3] GSI Helmholtzzentrum Schwerionenforsch Darmstadt, Planckstr 1, D-64291 Darmstadt, Germany
关键词
HIGH-ENERGY DENSITY; HEAVY-ION BEAMS; GROWTH; COMPRESSION; VISCOSITY; PRESSURE; FACILITY; HEDGEHOB; DRIVEN; FLUIDS;
D O I
10.1103/PhysRevE.95.053108
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A physical model has been developed for the linear Rayleigh-Taylor instability of a finite-thickness elastic slab laying on top of a semi-infinite ideal fluid. The model includes the nonideal effects of elasticity as boundary conditions at the top and bottom interfaces of the slab and also takes into account the finite transit time of the elastic waves across the slab thickness. For Atwood number A(T) = 1, the asymptotic growth rate is found to be in excellent agreement with the exact solution [Plohr and Sharp, Z. Angew. Math. Mech. 49, 786 (1998)], and a physical explanation is given for the reduction of the stabilizing effectiveness of the elasticity for the thinner slabs. The feedthrough factor is also calculated.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Rayleigh-Taylor instability in multiple finite-thickness fluid layers
    Sharma, Prashant
    PHYSICAL REVIEW E, 2024, 110 (06)
  • [2] Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer
    Wang, L. F.
    Guo, H. Y.
    Wu, J. F.
    Ye, W. H.
    Liu, Jie
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2014, 21 (12)
  • [3] Nonlinear saturation of Rayleigh-Taylor instability in a finite-thickness fluid layer
    Guo, H. Y.
    Wang, L. F.
    Ye, W. H.
    Wu, J. F.
    Zhang, J.
    Ding, Y. K.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2017, 24 (11)
  • [4] Rayleigh-Taylor instability in finite-thickness fluids with viscosity and surface tension
    Mikaelian, KO
    PHYSICAL REVIEW E, 1996, 54 (04): : 3676 - 3680
  • [5] A new approach to Rayleigh-Taylor instability:: Application to accelerated elastic solids
    Piriz, A. R.
    Cela, J. J. Lopez
    Moreno, M. C. Serna
    Cortazar, O. D.
    Tahir, N. A.
    Hoffmann, D. H. H.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 577 (1-2): : 250 - 256
  • [6] Linear Growth of Rayleigh-Taylor Instability of Two Finite-Thickness Fluid Layers
    郭宏宇
    王立锋
    叶文华
    吴俊峰
    张维岩
    Chinese Physics Letters, 2017, 34 (07) : 154 - 157
  • [7] Linear Growth of Rayleigh-Taylor Instability of Two Finite-Thickness Fluid Layers
    Guo, Hong-Yu
    Wang, Li-Feng
    Ye, Wen-Hua
    Wu, Jun-Feng
    Zhang, Wei-Yan
    CHINESE PHYSICS LETTERS, 2017, 34 (07)
  • [8] Linear Growth of Rayleigh-Taylor Instability of Two Finite-Thickness Fluid Layers
    郭宏宇
    王立锋
    叶文华
    吴俊峰
    张维岩
    Chinese Physics Letters, 2017, (07) : 154 - 157
  • [9] Effect of initial phase on the Rayleigh-Taylor instability of a finite-thickness fluid shell
    Guo, Hong-Yu
    Cheng, Tao
    Li, Jing
    Li, Ying-Jun
    CHINESE PHYSICS B, 2022, 31 (03)
  • [10] Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells
    Velikovich, A. L.
    Schmit, P. F.
    PHYSICS OF PLASMAS, 2015, 22 (12)