Rigorous Asymptotics of a KdV Soliton Gas

被引:29
作者
Girotti, M. [1 ]
Grava, T. [2 ,3 ]
Jenkins, R. [4 ]
McLaughlin, K. D. T-R [5 ]
机构
[1] Univ Montreal, Mila Inst, 6666 St Urbain, Montreal, PQ H2S 3H1, Canada
[2] SISSA, Via Bonomea 265, I-34100 Trieste, Italy
[3] Univ Bristol, Sch Math, Fry Bldg,Woodland Rd, Bristol BS8 1UG, Avon, England
[4] Univ Cent Florida, Dept Math, 4393 Andromeda Loop N, Orlando, FL 32816 USA
[5] Colorado State Univ, Dept Math, 1874 Campus Delivery, Ft Collins, CO 80523 USA
基金
欧盟地平线“2020”; 美国国家科学基金会;
关键词
D O I
10.1007/s00220-021-03942-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analytically study the long time and large space asymptotics of a new broad class of solutions of the KdV equation introduced by Dyachenko, Zakharov, and Zakharov. These solutions are characterized by a Riemann-Hilbert problem which we show arises as the limit N ->+infinity of a gas of N-solitons. We show that this gas of solitons in the limit N ->infinity is slowly approaching a cnoidal wave solution for x ->-infinity up to terms of order O(1/x), while approaching zero exponentially fast for x ->+infinity. We establish an asymptotic description of the gas of solitons for large times that is valid over the entire spatial domain, in terms of Jacobi elliptic functions.
引用
收藏
页码:733 / 784
页数:52
相关论文
共 43 条
[1]  
[Anonymous], 1999, COURANT LECT NOTES
[2]  
[Anonymous], 1975, FUNCT ANAL APPL+
[3]   EXTREME SUPERPOSITION: ROGUE WAVES OF INFINITE ORDER AND THE PAINLEVE-III HIERARCHY [J].
Bilman, Deniz ;
Ling, Liming ;
Miller, Peter D. .
DUKE MATHEMATICAL JOURNAL, 2020, 169 (04) :671-760
[4]   Large-Order Asymptotics for Multiple-Pole Solitons of the Focusing Nonlinear Schrodinger Equation [J].
Bilman, Deniz ;
Buckingham, Robert .
JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (05) :2185-2229
[5]   A Robust Inverse Scattering Transform for the Focusing Nonlinear Schrodinger Equation [J].
Bilman, Deniz ;
Miller, Peter D. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (08) :1722-1805
[6]   CNOIDAL WAVES AS EXACT SUMS OF REPEATED SOLITARY WAVES - NEW SERIES FOR ELLIPTIC FUNCTIONS [J].
BOYD, JP .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (05) :952-955
[7]   Macroscopic dynamics of incoherent soliton ensembles: Soliton gas kinetics and direct numerical modelling [J].
Carbone, F. ;
Dutykh, D. ;
El, G. A. .
EPL, 2016, 113 (03)
[8]   Universality of the Break-up Profile for the KdV Equation in the Small Dispersion Limit Using the Riemann-Hilbert Approach [J].
Claeys, T. ;
Grava, T. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 286 (03) :979-1009
[9]   SCATTERING AND INVERSE SCATTERING FOR STEPLIKE POTENTIALS IN THE SCHRODINGER-EQUATION [J].
COHEN, A ;
KAPPELER, T .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (01) :127-180
[10]   INVERSE SCATTERING THEORY FOR ONE-DIMENSIONAL SCHRODINGER OPERATORS WITH STEPLIKE FINITE-GAP POTENTIALS [J].
de Monvel, Anne Boutet ;
Egorova, Iryna ;
Teschl, Gerald .
JOURNAL D ANALYSE MATHEMATIQUE, 2008, 106 (1) :271-316