Semiclassical approach to the thermodynamics of spin chains

被引:8
作者
Cuccoli, A
Tognetti, V
Verrucchi, P
Vaia, R
机构
[1] Univ Florence, Dipartimento Fis, I-50125 Florence, Italy
[2] INFM, I-50125 Florence, Italy
[3] CNR, Ist Elettron Quantist, I-50127 Florence, Italy
来源
PHYSICAL REVIEW B | 2000年 / 62卷 / 01期
关键词
D O I
10.1103/PhysRevB.62.57
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using the semiclassical method called pure-quantum self-consistent harmonic approximation (PQSCHA), we evaluate thermodynamic quantities of one-dimensional Heisenberg ferromagnets and antiferromagnets, Since the PQSCHA reduces their evaluation to classical-like calculations, we take advantage of Fisher's exact solution [M. E. Fisher, Am J. Phys. 32, 343 (1964)] to get all results in an almost fully analytical way. Explicitly considered here are the specific heat, the correlation length, and the susceptibility. Good agreement with available numerical data and Monte Carlo simulations is found for S > 1 ferromagnets and antiferromagnets; for the latter it is seen that topological terms and the related Haldane gap are relevant only for the lowest spin values and temperatures.
引用
收藏
页码:57 / 60
页数:4
相关论文
共 28 条
[1]   HEAT-CAPACITIES OF LINEAR HEISENBERG CHAINS [J].
BLOTE, HWJ .
PHYSICA, 1974, 78 (02) :302-307
[2]   SPECIFIC-HEAT OF MAGNETIC LINEAR-CHAINS [J].
BLOTE, HWJ .
PHYSICA B & C, 1975, 79 (05) :427-466
[3]  
BONNER JC, 1964, PHYS REV A, V135, P640
[4]   Temperature dependent correlation length for the S=1/2 quantum Heisenberg antiferromagnet on the square lattice - Reply [J].
Cuccoli, A ;
Tognetti, V ;
Vaia, R ;
Verrucchi, P .
PHYSICAL REVIEW LETTERS, 1997, 79 (08) :1584-1584
[5]   QUANTUM THERMODYNAMICS IN CLASSICAL PHASE-SPACE [J].
CUCCOLI, A ;
TOGNETTI, V ;
VERRUCCHI, P ;
VAIA, R .
PHYSICAL REVIEW A, 1992, 45 (12) :8418-8429
[6]   Two-dimensional quantum Heisenberg antiferromagnet: Effective-Hamiltonian approach to the thermodynamics [J].
Cuccoli, A ;
Tognetti, V ;
Vaia, R ;
Verrucchi, P .
PHYSICAL REVIEW B, 1997, 56 (22) :14456-14468
[7]   THE EFFECTIVE POTENTIAL AND EFFECTIVE HAMILTONIAN IN QUANTUM-STATISTICAL MECHANICS [J].
CUCCOLI, A ;
GIACHETTI, R ;
TOGNETTI, V ;
VAIA, R ;
VERRUCCHI, P .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (41) :7891-7938
[8]  
CUCCOLI A, UNPUB
[9]   SUSCEPTIBILITY OF THE SPIN 1/2 HEISENBERG ANTIFERROMAGNETIC CHAIN [J].
EGGERT, S ;
AFFLECK, I ;
TAKAHASHI, M .
PHYSICAL REVIEW LETTERS, 1994, 73 (02) :332-335
[10]  
Feynman Richard P., 2010, Quantum Mechanics and Path Integrals