q-Pell sequences and two identities of V.A.!Lebesgue

被引:28
作者
Santos, JPO
Sills, AV [1 ]
机构
[1] Penn State Univ, Dept Math, Whitemore Lab 108, University Pk, PA 16802 USA
[2] Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
partitions; q-series; combinatorial identities; Pell numbers;
D O I
10.1016/S0012-365X(01)00475-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine a pair of Rogers-Ramanujan type identities of Lebesgue, and give polynomial identities for which the original identities are limiting cases. The polynomial identities turn out to be q-analogs of the Pell sequence. Finally, we provide combinatorial interpretations for the identities. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:125 / 142
页数:18
相关论文
共 12 条
[1]  
Andrews G. E., 1976, THEORY PARTITIONS
[2]   Q-ANALOG OF KUMMERS THEOREM AND APPLICATIONS [J].
ANDREWS, GE .
DUKE MATHEMATICAL JOURNAL, 1973, 40 (03) :525-528
[3]   LATTICE GAS GENERALIZATION OF THE HARD HEXAGON MODEL .3. Q-TRINOMIAL COEFFICIENTS [J].
ANDREWS, GE ;
BAXTER, RJ .
JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (3-4) :297-330
[4]  
ANDREWS GE, 1984, INDIAN J MATH, P51
[5]  
ANDREWS GE, 1984, GENERALIZED FROBENIU, V301, P1
[6]  
ANDREWS GE, 1999, SPECIAL FUNCTIONS
[7]  
Bailey WN., 1941, Q J MATH OXFORD, V12, P173, DOI DOI 10.1093/QMATH/OS-12.1.173
[8]   Polynomial identities, indices, and duality for the N=1 superconformal model SM(2,4v) [J].
Berkovich, A ;
McCoy, BM ;
Orrick, WP .
JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (5-6) :795-837
[9]  
DAUM JA, 1942, B AM MATH SOC, V12, P711
[10]  
Lebesgue, 1840, J MATH PURE APPL, V5, P42