Integratable high linearity and. high bandwidth compact tapered photodetector

被引:1
作者
Agashe, S. S. [1 ]
Shiu, K. -T.
Forrest, S. R.
机构
[1] Princeton Univ, Dept Elect Engn, PRISM, Princeton, NJ 08544 USA
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
关键词
asymmetric twin waveguide; high power; photodiode; photonic integrated circuit;
D O I
10.1109/LPT.2006.887326
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate a compact, high linearity, tapered photodiode based on the asymmetric twin guide (ATG) architecture. The photodiode has a 1-dB compression current density > 2.8 kA/cm(2), a bandwidth of (11 +/- 1) GHz, a responsivity of (0.30 +/- 0.03) A/W, and polarization sensitivity <=(1.0 +/- 0.5) dB. The tapered shape of the detector reduces space-charge induced nonlinearities at high current density. The linearity current density, to the best of our knowledge, is the highest reported for an integratable, edge-illuminated, polarization-insensitive p-i-n photodetector. The ATG architecture makes the device suitable for monolithic integration with active and passive optical elements such as amplifiers, lasers, modulators, arrayed waveguide gratings, and multimode interference couplers.
引用
收藏
页码:2635 / 2637
页数:3
相关论文
共 14 条
[1]   A monolithically integrated long-wavelength balanced photodiode using asymmetric twin-waveguide technology [J].
Agashe, SS ;
Datta, S ;
Xia, F ;
Forrest, SR .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (01) :236-238
[2]   InP-Based waveguide-integrated photodetector with 100-GHz bandwidth [J].
Bach, HG ;
Beling, A ;
Mekonnen, GG ;
Kunkel, R ;
Schmidt, D ;
Ebert, W ;
Seeger, A ;
Stollberg, M ;
Schlaak, W .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2004, 10 (04) :668-672
[3]   Miniaturized waveguide-integrated p-i-n photodetector with 120-GHz bandwidth and high responsivity [J].
Beling, A ;
Bach, HG ;
Mekonnen, GG ;
Kunkel, R ;
Schmidt, D .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (10) :2152-2154
[4]   Analysis of partially depleted absorber waveguide photodiodes [J].
Demiguel, S ;
Li, XW ;
Li, N ;
Chen, H ;
Campbell, JC ;
Wei, J ;
Anselm, A .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (08) :2505-2512
[5]   Polarization independent bulk active region semiconductor optical amplifiers for 1.3 mu m wavelengths [J].
Holtmann, C ;
Besse, PA ;
Brenner, T ;
Melchior, H .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1996, 8 (03) :343-345
[6]   High power and highly linear monolithically integrated distributed balanced photodetectors [J].
Islam, MS ;
Jung, T ;
Itoh, T ;
Wu, MC ;
Nespola, A ;
Sivco, DL ;
Cho, AY .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2002, 20 (02) :285-295
[7]   High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes [J].
Ito, H ;
Kodama, S ;
Muramoto, Y ;
Furuta, T ;
Nagatsuma, T ;
Ishibashi, T .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2004, 10 (04) :709-727
[8]   Diluted- and distributed-absorption microwave waveguide photodiodes for high efficiency and high power [J].
Jasmin, S ;
Vodjdani, N ;
Renaud, JC ;
Enard, A .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1997, 45 (08) :1337-1341
[9]   Photonic integration using asymmetric twin-waveguide (ATG) technology: Part II - Devices [J].
Menon, VA ;
Xia, F ;
Forrest, SR .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2005, 11 (01) :30-42
[10]  
MURAKAMI S, 1998, J PLASMA FUSION RES, V1, P122