Real-time Integrated Human Activity Recognition System based on Multimodal User Understanding

被引:3
作者
Choi, Jun-Ho [1 ]
Kim, Kyungmin [1 ]
Park, Taejin [1 ]
Yun, Junho [2 ]
Lee, Jong-Hwan [2 ]
Kim, Songkuk [1 ]
Shim, Hyunjung [1 ]
Lee, Jong-Seok [1 ]
机构
[1] Yonsei Univ, Seoul, South Korea
[2] Korea Univ, Seoul, South Korea
来源
PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES COMPANION (IUI'20) | 2020年
关键词
User understanding; activity recognition; multimodal data;
D O I
10.1145/3379336.3381482
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents our real-time human activity recognition system that understands human behavior using multimodal sensor data at multiple levels. Our system consists of a multimodal data acquisition framework and a user understanding algorithm including user identification, activity recognition, and health monitoring components.
引用
收藏
页码:89 / 90
页数:2
相关论文
共 6 条
  • [1] Heilbron FC, 2015, PROC CVPR IEEE, P961, DOI 10.1109/CVPR.2015.7298698
  • [2] EmbraceNet: A robust deep learning architecture for multimodal classification
    Choi, Jun-Ho
    Lee, Jong-Seok
    [J]. INFORMATION FUSION, 2019, 51 : 259 - 270
  • [3] The University of Sussex-Huawei Locomotion and Transportation Dataset for Multimodal Analytics With Mobile Devices
    Gjoreski, Hristijan
    Ciliberto, Mathias
    Wang, Lin
    Morales, Francisco Javier Ordonez
    Mekki, Sami
    Valentin, Stefan
    Roggen, Daniel
    [J]. IEEE ACCESS, 2018, 6 : 42592 - 42604
  • [4] Lesani Fatemeh Sadat, 2021, Pers. Ubiq. Comput., V25, P151
  • [5] Recurrent Residual Module for Fast Inference in Videos
    Pan, Bowen
    Lin, Wuwei
    Fang, Xiaolin
    Huang, Chaoqin
    Zhou, Bolei
    Lu, Cewu
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1536 - 1545
  • [6] YOLO9000: Better, Faster, Stronger
    Redmon, Joseph
    Farhadi, Ali
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6517 - 6525