Fine asymptotic behavior for eigenvalues of random normal matrices: Ellipse case

被引:29
作者
Lee, Seung-Yeop [1 ]
Riser, Roman [2 ]
机构
[1] Univ S Florida, Dept Math, 4202 East Fowler Ave, Tampa, FL 33620 USA
[2] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Leuven, Belgium
关键词
RIEMANN-HILBERT APPROACH; ORTHOGONAL POLYNOMIALS; EXPONENTIAL WEIGHTS; RESPECT; QUESTIONS; ENSEMBLES; KERNELS; GROWTH;
D O I
10.1063/1.4939973
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the random normal matrices with quadratic external potentials where the associated orthogonal polynomials are Hermite polynomials and the limiting support (called droplet) of the eigenvalues is an ellipse. We calculate the density of the eigenvalues near the boundary of the droplet up to the second subleading corrections and express the subleading corrections in terms of the curvature of the droplet boundary. From this result, we additionally get the expected number of eigenvalues outside the droplet. We also show that a certain Cauchy transform of the orthogonal polynomial vanishes in the bulk of the droplet up to an exponentially small error. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:29
相关论文
共 33 条
[1]   Viscous fingering and the shape of an electronic droplet in the quantum Hall regime [J].
Agam, O ;
Bettelheim, E ;
Wiegmann, P ;
Zabrodin, A .
PHYSICAL REVIEW LETTERS, 2002, 88 (23) :2368011-2368014
[2]  
Ameur Y., 2014, ARXIV14104132
[3]   Near-Boundary Asymptotics for Correlation Kernels [J].
Ameur, Yacin .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (01) :73-95
[4]   FLUCTUATIONS OF EIGENVALUES OF RANDOM NORMAL MATRICES [J].
Ameur, Yacin ;
Hedenmalm, Hakan ;
Makarov, Nikolai .
DUKE MATHEMATICAL JOURNAL, 2011, 159 (01) :31-81
[5]  
[Anonymous], 2000, Courant Lecture Notes
[6]  
[Anonymous], 2004, RANDOM MATRICES
[7]   Strong Asymptotics of the Orthogonal Polynomials with Respect to a Measure Supported on the Plane [J].
Balogh, Ferenc ;
Bertola, Marco ;
Lee, Seung-Yeop ;
McLaughlin, Kenneth D. T-R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (01) :112-172
[8]   Edge scaling limits for a family of non-Hermitian random matrix ensembles [J].
Bender, Martin .
PROBABILITY THEORY AND RELATED FIELDS, 2010, 147 (1-2) :241-271
[9]   Bergman Kernels for Weighted Polynomials and Weighted Equilibrium Measures of Cn [J].
Berman, Robert J. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) :1921-1946
[10]   Duality, biorthogonal polynomials and multi-matrix models [J].
Bertola, M ;
Eynard, B ;
Harnad, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 229 (01) :73-120