Ultra-low-activity total-body dynamic PET imaging allows equal performance to full-activity PET imaging for investigating kinetic metrics of 18F-FDG in healthy volunteers

被引:77
作者
Liu, Guobing [1 ,2 ,3 ,4 ]
Hu, Pengcheng [1 ,2 ,3 ,4 ]
Yu, Haojun [1 ,2 ,3 ,4 ]
Tan, Hui [1 ,2 ,3 ,4 ]
Zhang, Yiqiu [1 ,2 ,3 ,4 ]
Yin, Hongyan [1 ,2 ,3 ,4 ]
Hu, Yan [1 ,2 ,3 ,4 ]
Gu, Jianying [4 ,5 ]
Shi, Hongcheng [1 ,2 ,3 ,4 ]
机构
[1] Fudan Univ, Zhongshan Hosp, Dept Nucl Med, 180 Fenglin Rd, Shanghai 200032, Peoples R China
[2] Fudan Univ, Inst Nucl Med, Shanghai, Peoples R China
[3] Shanghai Inst Med Imaging, Shanghai, Peoples R China
[4] Fudan Univ, Zhongshan Hosp, Canc Prevent & Treatment Ctr, Shanghai, Peoples R China
[5] Fudan Univ, Zhongshan Hosp, Dept Plast Surg, 180 Fenglin Rd, Shanghai 200032, Peoples R China
关键词
Dynamic imaging; Low-activity imaging; Total-body imaging; Positron emission tomography (PET); 2-[F-18]-fluoro-2-deoxy-D-glucose (F-18-FDG); TUMOR; RECONSTRUCTION; STATISTICS; BIAS;
D O I
10.1007/s00259-020-05173-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To investigate the feasibility of ultra-low-activity total-body positron emission tomography (PET) dynamic imaging for quantifying kinetic metrics of 2-[F-18]-fluoro-2-deoxy-D-glucose (F-18-FDG) in normal organs and to verify its clinical relevance with full-activity imaging. Methods Dynamic total-body PET imaging was performed in 20 healthy volunteers, with eight using full activity (3.7 MBq/kg) of F-18-FDG and 12 using 10x activity reduction (0.37 MBq/kg). Image contrast, in terms of liver-to-muscle ratio (LMR), liver-to-blood ratio (LBR), and blood-to-muscle ratio (BMR) of radioactivity concentrations were assessed. A two-tissue compartment model was fitted to the time-to-activity curves in organs based on regions of interest (ROIs) delineation using PMOD, and constant rates (k(1), k(2), and k(3)) were generated. Kinetic constants, corresponding coefficients of variance (CoVs), image contrast, radiation dose, prompt counts, and data size were compared between full- and low-activity groups. Results All constant rates, corresponding CoVs, and image contrast in different organs were comparable with none significant differences between full- and ultra-low-activity groups. PET images in the ultra-low-activity group generated significantly lower effective radiation dose (median, 0.419 vs. 4.886 mSv, P < 0.001), reduced prompt counts (median, 2.79 vs. 55.68 billion, P < 0.001), and smaller data size (median, 71.11 vs. 723.18 GB, P < 0.001). Conclusion Total-body dynamic PET imaging using 10x reduction of injected activity could achieve relevant kinetic metrics of F-18-FDG and comparable image contrast with full-activity imaging. Activity reduction results in significant decrease of radiation dose and data size, rendering it more acceptable and easier for data reconstruction, transmission, and storage for clinical practice.
引用
收藏
页码:2373 / 2383
页数:11
相关论文
共 31 条
[1]  
Akaihe H, 1983, IEEE T AUTOMAT CONTR, V3
[2]   Weight-Based, Low-Dose Pediatric Whole-Body PET/CT Protocols [J].
Alessio, Adam M. ;
Kinahan, Paul E. ;
Manchanda, Vivek ;
Ghioni, Victor ;
Aldape, Lisa ;
Parisi, Marguerite T. .
JOURNAL OF NUCLEAR MEDICINE, 2009, 50 (10) :1570-1578
[3]   First Human Imaging Studies with the EXPLORER Total-Body PET Scanner [J].
Badawi, Ramsey D. ;
Shi, Hongcheng ;
Hu, Pengcheng ;
Chen, Shuguang ;
Xu, Tianyi ;
Price, Patricia M. ;
Ding, Yu ;
Spencer, Benjamin A. ;
Nardo, Lorenzo ;
Liu, Weiping ;
Bao, Jun ;
Jones, Terry ;
Li, Hongdi ;
Cherry, Simon R. .
JOURNAL OF NUCLEAR MEDICINE, 2019, 60 (03) :299-303
[4]   FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0 [J].
Boellaard, Ronald ;
Delgado-Bolton, Roberto ;
Oyen, Wim J. G. ;
Giammarile, Francesco ;
Tatsch, Klaus ;
Eschner, Wolfgang ;
Verzijlbergen, Fred J. ;
Barrington, Sally F. ;
Pike, Lucy C. ;
Weber, Wolfgang A. ;
Stroobants, Sigrid ;
Delbeke, Dominique ;
Donohoe, Kevin J. ;
Holbrook, Scott ;
Graham, Michael M. ;
Testanera, Giorgio ;
Hoekstra, Otto S. ;
Zijlstra, Josee ;
Visser, Eric ;
Hoekstra, Corneline J. ;
Pruim, Jan ;
Willemsen, Antoon ;
Arends, Bertjan ;
Kotzerke, Joerg ;
Bockisch, Andreas ;
Beyer, Thomas ;
Chiti, Arturo ;
Krause, Bernd J. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (02) :328-354
[5]   Total-body imaging: Transforming the role of positron emission tomography [J].
Cherry, Simon R. ;
Badawi, Ramsey D. ;
Karp, Joel S. ;
Moses, William W. ;
Price, Pat ;
Jones, Terry .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (381)
[6]  
Cherry SR, 2004, PHYS MED BIOL, V49, pR13, DOI 10.1088/0031-9155/49/3/R01
[7]   Estimating Effective Dose for CT Using Dose-Length Product Compared With Using Organ Doses: Consequences of Adopting International Commission on Radiological Protection Publication 103 or Dual-Energy Scanning [J].
Christner, Jodie A. ;
Kofler, James M. ;
McCollough, Cynthia H. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 194 (04) :881-889
[8]   PET Tumor Metabolism in Locally Advanced Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy: Value of Static versus Kinetic Measures of Fluorodeoxyglucose Uptake [J].
Dunnwald, Lisa K. ;
Doot, Robert K. ;
Specht, Jennifer M. ;
Gralow, Julie R. ;
Ellis, Georgiana K. ;
Livingston, Robert B. ;
Linden, Hannah M. ;
Gadi, Vijayakrishna K. ;
Kurland, Brenda F. ;
Schubert, Erin K. ;
Muzi, Mark ;
Mankoff, David A. .
CLINICAL CANCER RESEARCH, 2011, 17 (08) :2400-2409
[9]  
Feng T, 2020, J NUCL MED, V61
[10]   Biodistribution and Radiation Dosimetry in Humans of a New PET Ligand, 18F-PBR06, to Image Translocator Protein (18 kDa) [J].
Fujimura, Yota ;
Kimura, Yasuyuki ;
Simeon, Fabrice G. ;
Dickstein, Leah P. ;
Pike, Victor W. ;
Innis, Robert B. ;
Fujita, Masahiro .
JOURNAL OF NUCLEAR MEDICINE, 2010, 51 (01) :145-149