Techniques for harvesting, cell disruption and lipid extraction of microalgae for biofuel production

被引:25
作者
Bharte, Supriya [1 ]
Desai, Krutika [2 ]
机构
[1] SVKMs NMIMS Deemed Univ, Sunandan Div Sch Sci, Dept Biol Sci, Mumbai, Maharashtra, India
[2] SVKMs Mithibai Coll Arts Chauhan Inst Sci & Amrut, Dept Microbiol, Mumbai, Maharashtra, India
来源
BIOFUELS-UK | 2021年 / 12卷 / 03期
关键词
Microalgae; harvesting; cell disruption; lipid extraction; MICROWAVE-ASSISTED EXTRACTION; CARBON-DIOXIDE EXTRACTION; FRESH-WATER; CHLORELLA-VULGARIS; COMMERCIAL APPLICATIONS; BIODIESEL PRODUCTION; MARINE MICROALGAE; FLOCCULATION; BIOMASS; SEPARATION;
D O I
10.1080/17597269.2018.1472977
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Microalgal biofuels are one of the best alternatives to replace the nonrenewable fossil fuels. Microalgae offer various advantages, the most beneficial being their high growth rate and ability to grow on waste waters. Many microalgal species have been assessed and studied for biofuel production, and have shown varying amounts of lipid contents. Harvesting the microalgae and extracting the stored lipids is a major hurdle for biofuel production technology, due to their tough cell walls. This review focuses on techniques for harvesting, cell disruption and lipid extraction of microalgae used for biofuel production.
引用
收藏
页码:285 / 305
页数:21
相关论文
共 116 条
[1]   "Solvent-free" ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process [J].
Adam, Fanny ;
Abert-Vian, Maryline ;
Peltier, Gilles ;
Chemat, Farid .
BIORESOURCE TECHNOLOGY, 2012, 114 :457-465
[2]   High molecular weight lipids from the trilaminar outer wall (TLS)-containing microalgae Chlorella emersonii, Scenedesmus communis and Tetraedron minimum [J].
Allard, B ;
Templier, J .
PHYTOCHEMISTRY, 2001, 57 (03) :459-467
[3]   Kinetics study of microwave-assisted solvent extraction of oil from olive cake using hexane Comparison with the conventional extraction [J].
Amarni, Fatiha ;
Kadi, Hocine .
INNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES, 2010, 11 (02) :322-327
[4]   Microalgae as a potential source for biodiesel production: techniques, methods, and other challenges [J].
Arenas, E. G. ;
Rodriguez Palacio, M. C. ;
Juantorena, A. U. ;
Fernando, S. E. L. ;
Sebastian, P. J. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2017, 41 (06) :761-789
[5]   Biomass from microalgae separation by electroflotation with iron and aluminum spiral electrodes [J].
Baierle, Felipe ;
John, Danielle K. ;
Souza, Maiara P. ;
Bjerk, Thiago R. ;
Moraes, Maria S. A. ;
Hoeltz, Michele ;
Rohlfes, Ana L. B. ;
Camargo, Maria Emilia ;
Corbellini, Valeriano A. ;
Schneider, Rosana C. S. .
CHEMICAL ENGINEERING JOURNAL, 2015, 267 :274-281
[6]   Oil extraction from Scenedesmus obliquus using a continuous microwave system - design, optimization, and quality characterization [J].
Balasubramanian, Sundar ;
Allen, James D. ;
Kanitkar, Akanksha ;
Boldor, Dorin .
BIORESOURCE TECHNOLOGY, 2011, 102 (03) :3396-3403
[7]  
Barragan BE., 2012, BIORESOURCE TECHNOL
[8]   Harvesting techniques applied to microalgae: A review [J].
Barros, Ana I. ;
Goncalves, Ana L. ;
Simoes, Manuel ;
Pires, Jose C. M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 41 :1489-1500
[9]   Understanding the mechanisms of lipid extraction from microalga Chlamydomonas reinhardtii after electrical field solicitations and mechanical stress within a microfluidic device [J].
Bensalem, Sakina ;
Lopes, Filipa ;
Bodenes, Pierre ;
Pareau, Dominique ;
Francais, Olivier ;
Le Pioufle, Bruno .
BIORESOURCE TECHNOLOGY, 2018, 257 :129-136
[10]   Algal Proteins: Extraction, Application, and Challenges Concerning Production [J].
Bleakley, Stephen ;
Hayes, Maria .
FOODS, 2017, 6 (05) :1-34