Quasi-Periodic, Periodic Waves, and Soliton Solutions for the Combined KdV-mKdV Equation

被引:20
作者
Abdel-Salam, Emad A. -B. [1 ]
机构
[1] Assiut Univ, Dept Math, New Valley Fac Educ, El Khargah, New Valley, England
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2009年 / 64卷 / 9-10期
关键词
Improved Jacobi Elliptic Function Method; Elliptic Equation; Generalized Jacobi Elliptic Functions; Combined KdV-mKdV Equation; Soliton Solutions; NONLINEAR EVOLUTION-EQUATIONS; VARIANT BOUSSINESQ EQUATIONS; ELLIPTIC FUNCTION EXPANSION; BACKLUND TRANSFORMATION; DIFFERENTIAL-EQUATIONS; TRAVELING-WAVES; SYSTEM; TANH; COMPACT;
D O I
10.1515/zna-2009-9-1016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By introducing the generalized Jacobi elliptic function. a new improved Jacobi elliptic function method is used to construct the exact travelling wave solutions of the nonlinear partial differential equations in a unified way. With the help of the improved Jacobi elliptic function method and symbolic computation, some new exact solutions of the combined Korleweg-de Vries-modified Korteweg-de Vries (KdV-mKdV) equation are obtained. Based on the derived solution, we investigate the evolution of doubly periodic and solitons in the background waves. Also, their structures are further discussed graphically.
引用
收藏
页码:639 / 645
页数:7
相关论文
共 37 条