Semi-implicit Runge-Kutta schemes for the Navier-Stokes equations

被引:5
作者
Sterner, E [1 ]
机构
[1] UPPSALA UNIV,DEPT COMP SCI,S-75104 UPPSALA,SWEDEN
来源
BIT | 1997年 / 37卷 / 01期
关键词
Navier-Stokes equations; semi-implicit; Runge-Kutta;
D O I
10.1007/BF02510178
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The stationary Navier-Stokes equations are solved in 2D with semi-implicit Runge-Kutta schemes, where explicit time-integration in the streamwise direction is combined with implicit integration in the body-normal direction. For model problems stability restrictions and convergence properties are studied. Numerical experiments for the flow over a flat plate show that the number of iterations for the semi-implicit schemes is almost independent of the Reynolds number.
引用
收藏
页码:164 / 178
页数:15
相关论文
共 13 条
[1]   IMPROVED IMPLICIT RESIDUAL SMOOTHING FOR STEADY-STATE COMPUTATIONS OF 1ST-ORDER HYPERBOLIC SYSTEMS [J].
ENANDER, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 107 (02) :291-296
[2]   THE GMRES METHOD IMPROVED BY SECURING FAST-WAVE PROPAGATION [J].
GUSTAFSSON, B ;
LOTSTEDT, P .
APPLIED NUMERICAL MATHEMATICS, 1993, 12 (1-3) :135-152
[3]  
Hirsch C., 1988, NUMERICAL COMPUTATIO, V2
[4]   COMPUTATIONAL TRANSONICS [J].
JAMESON, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (05) :507-549
[5]  
Kreiss H., 1989, INITIAL BOUNDARY VAL
[6]  
LOYD B, 1989, THESIS MIT CAMBRIDGE
[7]  
Martinelli L., 1987, THESIS PRINCETON U N
[8]  
Schlichting H., 2000, Boundary-Layer Theory
[9]  
SJOGREN B, 1994, 162 UPPS U DEP SCI C
[10]   STABILITY OF A RUNGE-KUTTA METHOD FOR THE NAVIER-STOKES EQUATION [J].
SOWA, J .
BIT, 1990, 30 (03) :542-560