APPLICATION OF AN IMPROVED U-NET NEURAL NETWORK ON FRACTURE SEGMENTATION FROM OUTCROP IMAGES

被引:7
|
作者
Wang, Zhibao [1 ,2 ]
Zhang, Ziming [1 ]
Bai, Lu [3 ]
Yang, Yuze [1 ]
Ma, Qiang [4 ]
机构
[1] Northeast Petr Univ, Sch Comp & Informat Technol, Daqing, Peoples R China
[2] Northeast Petr Univ, Bohai Rim Energy Res Inst, Qinhuangdao, Hebei, Peoples R China
[3] Ulster Univ, Sch Comp, Belfast, Antrim, North Ireland
[4] Heilongjiang Bayi Agr Univ, Coll Informat & Elect Engn, Daqing, Peoples R China
关键词
Deep learning; outcrop; fracture detection; ResNeXt; U-Net;
D O I
10.1109/IGARSS46834.2022.9883208
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Outcrop records contain very rich geological historical information, and the study of fractures in outcrop areas is an important part of geological exploration work. The accurate fracture information can provide useful technical support for the development and exploration of subsurface oil and gas. The outcrop images usually include unclear boundaries, complex structure and inconspicuous features, which make fracture detection from outcrop images a difficult task. To tackle these challenges, an improved U-Net algorithm based on the ResNeXt module is proposed in this paper to segment the fractures from the outcrop images. Experiments are conducted on the outcrop images from Yijianfang area in the Tarim Basin in China, and the results show that the proposed algorithm has improved the accuracy and IoU in fracture segmentation from the outcrop images.
引用
收藏
页码:3512 / 3515
页数:4
相关论文
共 50 条
  • [21] Fuzzy U-Net Neural Network Design for Image Segmentation
    Kirichev, Mark
    Slavov, Todor
    Momcheva, Galina
    CONTEMPORARY METHODS IN BIOINFORMATICS AND BIOMEDICINE AND THEIR APPLICATIONS, 2022, 374 : 177 - 184
  • [22] Breast tumor segmentation in ultrasound images: comparing U-net and U-net + +
    de Oliveira, Carlos Eduardo Gonçalves
    Vieira, Sílvio Leão
    Paranaiba, Caio Felipe Brito
    Itikawa, Emerson Nobuyuki
    Research on Biomedical Engineering, 2025, 41 (01)
  • [23] Improved Brain Tumor Segmentation in MR Images with a Modified U-Net
    Alquran, Hiam
    Alslatie, Mohammed
    Rababah, Ali
    Mustafa, Wan Azani
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [24] An Algorithm for Segmentation of Kidney Tissues on CT Images Based on a U-Net Convolutional Neural Network
    Ivanov K.O.
    Kazarinov A.V.
    Dubrovin V.N.
    Rozhentsov A.A.
    Baev A.A.
    Evdokimov A.O.
    Biomedical Engineering, 2023, 56 (06) : 424 - 428
  • [25] Improved U-Net Segmentation Algorithm for the Retinal Blood Vessel Images
    Li Daxiang
    Zhang Zhen
    ACTA OPTICA SINICA, 2020, 40 (10)
  • [26] An improved U-Net method for the semantic segmentation of remote sensing images
    Zhongbin Su
    Wei Li
    Zheng Ma
    Rui Gao
    Applied Intelligence, 2022, 52 : 3276 - 3288
  • [27] An improved U-Net method for the semantic segmentation of remote sensing images
    Su, Zhongbin
    Li, Wei
    Ma, Zheng
    Gao, Rui
    APPLIED INTELLIGENCE, 2022, 52 (03) : 3276 - 3288
  • [28] ARB U-Net: An Improved Neural Network for Suprapatellar Bursa Effusion Ultrasound Image Segmentation
    Wang, Zhengyu
    Yang, Qi
    Liu, Han
    Mao, Le
    Zhu, Haijiang
    Gao, Xiaoyu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT III, 2022, 13531 : 14 - 23
  • [29] A Probabilistic U-Net for Segmentation of Ambiguous Images
    Kohl, Simon A. A.
    Romera-Paredes, Bernardino
    Meyer, Clemens
    De Fauw, Jeffrey
    Ledsam, Joseph R.
    Maier-Hein, Klaus H.
    Eslami, S. M. Ali
    Rezende, Danilo Jimenez
    Ronneberger, Olaf
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [30] Mosaic Images Segmentation using U-net
    Fenu, Gianfranco
    Medvet, Eric
    Panfilo, Daniele
    Pellegrino, Felice Andrea
    ICPRAM: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2020, : 485 - 492