APPLICATION OF AN IMPROVED U-NET NEURAL NETWORK ON FRACTURE SEGMENTATION FROM OUTCROP IMAGES

被引:7
|
作者
Wang, Zhibao [1 ,2 ]
Zhang, Ziming [1 ]
Bai, Lu [3 ]
Yang, Yuze [1 ]
Ma, Qiang [4 ]
机构
[1] Northeast Petr Univ, Sch Comp & Informat Technol, Daqing, Peoples R China
[2] Northeast Petr Univ, Bohai Rim Energy Res Inst, Qinhuangdao, Hebei, Peoples R China
[3] Ulster Univ, Sch Comp, Belfast, Antrim, North Ireland
[4] Heilongjiang Bayi Agr Univ, Coll Informat & Elect Engn, Daqing, Peoples R China
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
关键词
Deep learning; outcrop; fracture detection; ResNeXt; U-Net;
D O I
10.1109/IGARSS46834.2022.9883208
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Outcrop records contain very rich geological historical information, and the study of fractures in outcrop areas is an important part of geological exploration work. The accurate fracture information can provide useful technical support for the development and exploration of subsurface oil and gas. The outcrop images usually include unclear boundaries, complex structure and inconspicuous features, which make fracture detection from outcrop images a difficult task. To tackle these challenges, an improved U-Net algorithm based on the ResNeXt module is proposed in this paper to segment the fractures from the outcrop images. Experiments are conducted on the outcrop images from Yijianfang area in the Tarim Basin in China, and the results show that the proposed algorithm has improved the accuracy and IoU in fracture segmentation from the outcrop images.
引用
收藏
页码:3512 / 3515
页数:4
相关论文
共 50 条
  • [21] Segmentation of thyroid glands and nodules in ultrasound images using the improved U-Net architecture
    Zheng, Tianlei
    Qin, Hang
    Cui, Yingying
    Wang, Rong
    Zhao, Weiguo
    Zhang, Shijin
    Geng, Shi
    Zhao, Lei
    BMC MEDICAL IMAGING, 2023, 23 (01)
  • [22] Mosaic Images Segmentation using U-net
    Fenu, Gianfranco
    Medvet, Eric
    Panfilo, Daniele
    Pellegrino, Felice Andrea
    ICPRAM: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2020, : 485 - 492
  • [23] A Method for Retina Segmentation by Means of U-Net Network
    Santone, Antonella
    De Vivo, Rosamaria
    Recchia, Laura
    Cesarelli, Mario
    Mercaldo, Francesco
    ELECTRONICS, 2024, 13 (22)
  • [24] Automatic Segmentation of Lung Noudles using improved U-Net NetWork
    Zhou, Ying
    Chen, Ming
    Zhang, Mengyi
    Wang, Tian
    Yan, Fei
    Xie, Chao
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 1609 - 1613
  • [25] Improved U-Net Network Segmentation Method for Remote Sensing Image
    Zhong, Letian
    Lin, Yong
    Sul, Yian
    Fang, Xianbao
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 1034 - 1039
  • [26] Pancreas Segmentation Using SRGAN Combined with U-Net Neural Network
    Elizabeth Tualombo, Mayra
    Reyes, Ivan
    Vizcaino-Imacana, Paulina
    Morocho-Cayamcela, Manuel Eugenio
    INFORMATION AND COMMUNICATION TECHNOLOGIES, TICEC 2024, 2025, 2273 : 21 - 38
  • [27] Acral melanocytic lesion segmentation with a convolution neural network (U-Net)
    Jaworek-Korjakowska, Joanna
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [28] Cochlear CT image segmentation based on u-net neural network
    Li, Cheng
    Li, Xiaojun
    Zhou, Rong
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2023, 16 (02)
  • [29] ICA-Unet: An improved U-net network for brown adipose tissue segmentation
    Wang, Haolin
    Wang, Zhonghao
    Wang, Jingle
    Li, Kang
    Geng, Guohua
    Kang, Fei
    Cao, Xin
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2022, 15 (03)
  • [30] An Improved U-Net for Cell Nuclear Segmentation
    Jiang H.
    Qin G.
    Zou M.
    Sun M.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2019, 53 (04): : 100 - 107and121