Thermincola ferriacetica sp nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction

被引:91
|
作者
Zavarzina, Daria G.
Sokolova, Tatyana G.
Tourova, Tatyana P.
Chernyh, Nikolai A.
Kostrikina, Nadezhda A.
Bonch-Osmolovskaya, Elizaveta A.
机构
[1] Russian Acad Sci, Winogradsky Inst Microbiol, Moscow 117312, Russia
[2] Russian Acad Sci, Ctr Bioengn, Moscow 117312, Russia
基金
俄罗斯基础研究基金会;
关键词
Fe(III)-reduction; acetate-oxidation; CO-oxidation; thermophile; magnetite formation; GEN; NOV; THERMOTERRABACTERIUM-FERRIREDUCENS; HYDROGENOGENIC BACTERIUM; MAGNETITE; SULFUR;
D O I
10.1007/s00792-006-0004-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A moderately thermophilic, sporeforming bacterium able to reduce amorphous Fe(III)-hydroxide was isolated from ferric deposits of a terrestrial hydrothermal spring, Kunashir Island (Kurils), and designated as strain Z-0001. Cells of strain Z-0001 were straight, Gram-positive rods, slowly motile. Strain Z-0001 was found to be an obligate anaerobe. It grew in the temperature range from 45 to 70 degrees C with an optimum at 57-60 degrees C, in a pH range from 5.9 to 8.0 with an optimum at 7.0-7.2, and in NaCl concentration range 0-3.5% with an optimum at 0%. Molecular hydrogen, acetate, peptone, yeast and beef extracts, glycogen, glycolate, pyruvate, betaine, choline, N-acetyl-D-glucosamine and casamino acids were used as energy substrates for growth in presence of Fe(III) as an electron acceptor. Sugars did not support growth. Magnetite, Mn(IV) and anthraquinone-2,6-disulfonate served as the alternative electron acceptors, supporting the growth of isolate Z-0001 with acetate as electron donor. Formation of magnetite was observed when amorphous Fe(III) hydroxide was used as electron acceptor. Yeast extract, if added, stimulated growth, but was not required. Isolate Z-0001 was able to grow chemolithoautotrophicaly with molecular hydrogen as the only energy substrate, Fe(III) as electron acceptor and CO2 as the carbon source. Isolate Z-0001 was able to grow with 100% CO as the sole energy source, producing H-2 and CO2, requiring the presence of 0.2 g l(-1) of acetate as the carbon source. The G + C content of strain Z-0001T DNA G + C was 47.8 mol%. Based on 16S rRNA sequence analyses strain Z-0001 fell into the cluster of family Peptococcaceae, within the low G + C content Gram-Positive bacteria, clustering with Thermincola carboxydophila (98% similarity). DNA-DNA hybridization with T. carboxydophila was 27%. On the basis of physiological and phylogenetic data it is proposed that strain Z-0001(T) (=DSMZ 14005, VKM B-2307) should be placed in the genus Thermincola as a new species Thermincola ferriacetica sp. nov.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [1] Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction
    Daria G. Zavarzina
    Tatyana G. Sokolova
    Tatyana P. Tourova
    Nikolai A. Chernyh
    Nadezhda A. Kostrikina
    Elizaveta A. Bonch-Osmolovskaya
    Extremophiles, 2007, 11 : 1 - 7
  • [2] Thermoanaerobacter siderophilus sp nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium
    Slobodkin, AI
    Tourova, TP
    Kuznetsov, BB
    Kostrikina, NA
    Chernyh, NA
    Bonch-Osmolovskaya, EA
    INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, 1999, 49 : 1471 - 1478
  • [3] Rhodoferax ferrireducens sp nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III)
    Finneran, KT
    Johnsen, CV
    Lovley, DR
    INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2003, 53 : 669 - 673
  • [4] Hydrogenophilus thermoluteolus gen, nov., sp. nov., a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium
    Hayashi, NR
    Ishida, T
    Yokota, A
    Kodama, T
    Igarashi, Y
    INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, 1999, 49 : 783 - 786
  • [5] Pseudovibrio denitrificans gen. nov., sp nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification
    Shieh, WY
    Lin, YT
    Jean, WD
    INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2004, 54 : 2307 - 2312
  • [6] Thermosulfuriphilus ammonigenes gen. nov., sp nov., a thermophilic, chemolithoautotrophic bacterium capable of respiratory ammonification of nitrate with elemental sulfur
    Slobodkina, Galina B.
    Reysenbach, Anna-Louise
    Kolganova, Tatyana V.
    Novikov, Andrei A.
    Bonch-Osmoloyskaya, Eizayeta A.
    Slobodkin, Alexander I.
    INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2017, 67 (09) : 3474 - 3479
  • [7] Moorella humiferrea sp nov., a thermophilic, anaerobic bacterium capable of growth via electron shuttling between humic acid and Fe(III)
    Nepomnyashchaya, Y. N.
    Slobodkina, G. B.
    Baslerov, R. V.
    Chernyh, N. A.
    Bonch-Osmolovskaya, E. A.
    Netrusov, A. I.
    Slobodkin, A. I.
    INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2012, 62 : 613 - 617
  • [8] Thermoterrabacterium ferrireducens gen nov, sp nov, a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring
    Slobodkin, A
    Reysenbach, AL
    Strutz, N
    Dreier, M
    Wiegel, J
    INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, 1997, 47 (02): : 541 - 547
  • [9] Carboxydothermus siderophilus sp nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring
    Slepova, Tatiana V.
    Sokolova, Tatyana G.
    Kolganova, Tatyana V.
    Tourova, Tatyana P.
    Bonch-Osmolovskaya, Elizaveta A.
    INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2009, 59 : 213 - 217
  • [10] Carboxydocella manganica sp nov., a thermophilic, dissimilatory Mn(IV)- and Fe(III)-reducing bacterium from a Kamchatka hot spring
    Slobodkina, G. B.
    Panteleeva, A. N.
    Sokolova, T. G.
    Bonch-Osmolovskaya, E. A.
    Slobodkin, A. I.
    INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2012, 62 : 890 - 894