On the Degree of Hilbert Polynomials of Derived Functors

被引:0
作者
Saremi, H. [1 ]
Mafi, A. [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Sanandaj Branch, POB 618, Sanandaj, Iran
[2] Univ Kurdistan, Dept Math, POB 416, Sanandaj, Iran
关键词
Hilbert-Samuel polynomial; derived functors; MODULES; POWERS; DEPTH;
D O I
10.1134/S0001434619090116
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a d-dimensional Cohen-Macaulay local ring (R,m), let I be an m-primary ideal, and let J be a minimal reduction ideal of I. If M is a maximal Cohen-Macaulay R-module, then, for n large enough and 1 <= i <= d, the lengths of the modules Ext(R)i(R/J,M/InM) and ToriR(R/J,M/InM) are polynomials of degree d - 1. It is also shown that deg beta(R)(i)(M/InM)=deg mu(i)(R)(M/(IM)-M-n)=d - 1 where beta(R)(i) (center dot) and mu(i)(R) (center dot) are the ith Betti number and the ith Bass number, respectively.
引用
收藏
页码:423 / 428
页数:6
相关论文
共 14 条