Chiral plasmonics

被引:702
作者
Hentschel, Mario [1 ,2 ]
Schaeferling, Martin [1 ,2 ]
Duan, Xiaoyang [3 ,4 ]
Giessen, Harald [1 ,2 ]
Liu, Na [3 ,4 ]
机构
[1] Univ Stuttgart, Inst Phys 4, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Res Ctr SCoPE, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[3] Max Planck Inst Intelligent Syst, Heisenbergstr 3, D-70569 Stuttgart, Germany
[4] Heidelberg Univ, Kirchhoff Inst Phys, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany
来源
SCIENCE ADVANCES | 2017年 / 3卷 / 05期
基金
欧洲研究理事会;
关键词
BEAM-INDUCED-DEPOSITION; CIRCULAR-DICHROISM; NANOPARTICLE ASSEMBLIES; OPTICAL-ACTIVITY; DNA ORIGAMI; CELLULOSE NANOCRYSTALS; NANOSTRUCTURES; FIELDS; METAMATERIAL; NANOPLASMONICS;
D O I
10.1126/sciadv.1602735
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a comprehensive overview of chirality and its optical manifestation in plasmonic nanosystems and nanostructures. We discuss top-down fabricated structures that range from solid metallic nanostructures to groupings of metallic nanoparticles arranged in three dimensions. We also present the large variety of bottom-up synthesized structures. Using DNA, peptides, or other scaffolds, complex nanoparticle arrangements of up to hundreds of individual nanoparticles have been realized. Beyond this static picture, we also give an overview of recent demonstrations of active chiral plasmonic systems, where the chiral optical response can be controlled by an external stimulus. We discuss the prospect of using the unique properties of complex chiral plasmonic systems for enantiomeric sensing schemes.
引用
收藏
页数:12
相关论文
共 109 条
[1]   Induced Chirality through Electromagnetic Coupling between Chiral Molecular Layers and Plasmonic Nanostructures [J].
Abdulrahman, Nadia A. ;
Fan, Z. ;
Tonooka, Taishi ;
Kelly, Sharon M. ;
Gadegaard, Nikolaj ;
Hendry, Euan ;
Govorov, Alexander O. ;
Kadodwala, Malcolm .
NANO LETTERS, 2012, 12 (02) :977-983
[2]  
[Anonymous], 2003, MOL PHYS ELEMENTS QU
[3]   Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods [J].
Auguie, Baptiste ;
Lorenzo Alonso-Gomez, Jose ;
Guerrero-Martinez, Andres ;
Liz-Marzan, Luis M. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (08) :846-851
[4]   Two chiroptical modes of silver nanospirals [J].
Bai, Fan ;
Deng, Junhong ;
Yang, Mengsu ;
Fu, Junxue ;
Ng, Jack ;
Huang, Zhifeng .
NANOTECHNOLOGY, 2016, 27 (11)
[5]  
Barron L.D., 2004, Molecular Light Scattering and Optical Activity, V2nd ed.
[6]   Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances [J].
Ben-Moshe, Assaf ;
Maoz, Ben M. ;
Govorov, Alexander O. ;
Markovich, Gil .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (16) :7028-7041
[7]  
Berova N., 2000, Circular Dichroism: Principles and Applications
[8]   Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials [J].
Chen, Wei ;
Bian, Ai ;
Agarwal, Ashish ;
Liu, Liqiang ;
Shen, Hebai ;
Wang, Libing ;
Xu, Chuanlai ;
Kotov, Nicholas A. .
NANO LETTERS, 2009, 9 (05) :2153-2159
[9]   Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures [J].
Davis, T. J. ;
Hendry, E. .
PHYSICAL REVIEW B, 2013, 87 (08)
[10]   Twisted split-ring-resonator photonic metamaterial with huge optical activity [J].
Decker, M. ;
Zhao, R. ;
Soukoulis, C. M. ;
Linden, S. ;
Wegener, M. .
OPTICS LETTERS, 2010, 35 (10) :1593-1595