Specification of finite effect algebras

被引:4
作者
Foulis, DJ [1 ]
Greechie, RJ
机构
[1] Univ Massachusetts, Dept Math Stat, Amherst, MA 01003 USA
[2] Louisiana Tech Univ, Coll Engn & Sci, Ruston, LA 71272 USA
关键词
D O I
10.1023/A:1003641905541
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study and relate five basic methods for specifying or describing a finite effect algebra, indicate some computational algorithms for dealing with effect algebras so specified, and mention in passing some open questions that await solution.
引用
收藏
页码:665 / 676
页数:12
相关论文
共 11 条
[1]  
[Anonymous], 1970, CONVEXITY OPTIMIZATI
[2]  
[Anonymous], FDN PHYS
[3]   Interval and scale effect algebras [J].
Bennett, MK ;
Foulis, DJ .
ADVANCES IN APPLIED MATHEMATICS, 1997, 19 (02) :200-215
[4]  
Busch P., 1996, The Quantum Theory of Measurement, DOI 10.1007/978-3-540-37205-9
[5]   Test groups and effect algebras [J].
Foulis, DJ ;
Bennett, MK ;
Greechie, RJ .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (06) :1117-1140
[6]   SUMS AND PRODUCTS OF INTERVAL ALGEBRAS [J].
FOULIS, DJ ;
GREECHIE, RJ ;
BENNETT, MK .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1994, 33 (11) :2119-2136
[7]  
FOULIS DJ, IN PRESS INT J THEOR
[8]   TRANSITION TO EFFECT ALGEBRAS [J].
GREECHIE, RJ ;
FOULIS, DJ .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (08) :1369-1382
[9]   THE CENTER OF AN EFFECT ALGEBRA [J].
GREECHIE, RJ ;
FOULIS, D ;
PULMANNOVA, S .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1995, 12 (01) :91-106