Testing stochastic gravitational wave signals from primordial black holes with optical telescopes

被引:52
作者
Sugiyama, Sunao [1 ,2 ]
Takhistov, Volodymyr [1 ,3 ]
Vitagliano, Edoardo [3 ]
Kusenko, Alexander [1 ,3 ]
Sasaki, Misao [1 ,4 ,5 ]
Takada, Masahiro [1 ]
机构
[1] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, UTIAS, Kashiwa, Chiba 2778583, Japan
[2] Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan
[3] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[4] Kyoto Univ, Ctr Gravitat Phys, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[5] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 10617, Taiwan
基金
美国国家科学基金会;
关键词
COLLAPSE; RADIATION; CONSTRAINTS; LIMITS;
D O I
10.1016/j.physletb.2021.136097
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Primordial black holes (PBHs) can constitute the predominant fraction of dark matter (DM) if PBHs reside in the currently unconstrained "sublunar" mass range. PBHs originating from scalar perturbations generated during inflation can naturally appear with a broad spectrum in a class of models. The resulting stochastic gravitational wave (GW) background generated from such PBH production can account for the recently reported North American Nanohertz Observatory for Gravitational Waves (NANOGrav) pulsar timing array data signal, and will be testable in future GW observations by interferometer-type experiments such as Laser Interferometer Space Antenna (LISA). We show that the broad mass function of such PBH DM is already being probed by Subaru Hyper Suprime-Cam (HSC) microlensing data and is consistent with a detected candidate event. Upcoming observations of HSC will be able to provide an independent definitive test of the stochastic GW signals originating from such PBH DM production scenarios. (C) 2021 The Authors. Published by Elsevier B.V.
引用
收藏
页数:4
相关论文
共 99 条
[1]  
Abbott BP, 2017, PHYS REV LETT, V118, DOI [10.1103/PhysRevLett.118.121102, 10.1103/PhysRevLett.118.221101]
[2]  
Abbott B.P., 2016, arXiv:1602.03837 gr-qc, V116, P061102, DOI [10.1103/PhysRevLett.116.061102, DOI 10.1103/PHYSREVLETT.116.061102]
[3]  
Addazi A., 2020, ARXIV200910327HEPPH
[4]   Merger rate of primordial black-hole binaries [J].
Ali-Haimoud, Yacine ;
Kovetz, Ely D. ;
Kamionkowski, Marc .
PHYSICAL REVIEW D, 2017, 96 (12)
[5]   Cosmic microwave background limits on accreting primordial black holes [J].
Ali-Haimoud, Yacine ;
Kamionkowski, Marc .
PHYSICAL REVIEW D, 2017, 95 (04)
[6]   Cosmological gravitational wave background from primordial density perturbations [J].
Ananda, Kishore N. ;
Clarkson, Chris ;
Wands, David .
PHYSICAL REVIEW D, 2007, 75 (12)
[7]  
[Anonymous], 2016, ARXIV161008479ASTROP
[8]   Constraining primordial black hole masses with the isotropic gamma ray background [J].
Arbey, Alexandre ;
Auffinger, Jeremy ;
Silk, Joseph .
PHYSICAL REVIEW D, 2020, 101 (02)
[9]   The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background [J].
Arzoumanian, Z. ;
Baker, P. T. ;
Brazier, A. ;
Burke-Spolaor, S. ;
Chamberlin, S. J. ;
Chatterjee, S. ;
Christy, B. ;
Cordes, J. M. ;
Cornish, N. J. ;
Crawford, F. ;
Cromartie, H. Thankful ;
Crowter, K. ;
DeCesar, M. ;
Demorest, P. B. ;
Dolch, T. ;
Ellis, J. A. ;
Ferdman, R. D. ;
Ferrara, E. ;
Folkner, W. M. ;
Fonseca, E. ;
Garver-Daniels, N. ;
Gentile, P. A. ;
Haas, R. ;
Hazboun, J. S. ;
Huerta, E. A. ;
Islo, K. ;
Jones, G. ;
Jones, M. L. ;
Kaplan, D. L. ;
Kaspi, V. M. ;
Lam, M. T. ;
Lazio, T. J. W. ;
Levin, L. ;
Lommen, A. N. ;
Lorimer, D. R. ;
Luo, J. ;
Lynch, R. S. ;
Madison, D. R. ;
McLaughlin, M. A. ;
McWilliams, S. T. ;
Mingarelli, C. M. F. ;
Ng, C. ;
Nice, D. J. ;
Park, R. S. ;
Pennucci, T. T. ;
Pol, N. S. ;
Ransom, S. M. ;
Ray, P. S. ;
Rasskazov, A. ;
Siemens, X. .
ASTROPHYSICAL JOURNAL, 2018, 859 (01)
[10]  
Arzoumanian Z., ARXIV200904496ASTROP