T3 Stern-Gerlach Matter-Wave Interferometer

被引:54
作者
Amit, O. [1 ]
Margalit, Y. [1 ,2 ]
Dobkowski, O. [1 ]
Zhou, Z. [1 ]
Japha, Y. [1 ]
Zimmermann, M. [3 ,4 ]
Efremov, M. A. [3 ,4 ]
Narducci, F. A. [5 ]
Rase, E. M. [1 ,6 ]
Schleich, W. P. [3 ,4 ,7 ,8 ,9 ]
Folmani, R. [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[2] MIT, Res Lab Elect, MIT Harvard Ctr Ultracold Atoms, Dept Phys, Cambridge, MA 02139 USA
[3] Univ Ulm, Inst Quantenphys, D-89081 Ulm, Germany
[4] Univ Ulm, Ctr Integrated Quantum Sci & Technol IQst, D-89081 Ulm, Germany
[5] Naval Postgrad Sch, Dept Phys, Monterey, CA 93943 USA
[6] Leibniz Univ Hannover, Inst Quantenopt, D-30167 Hannover, Germany
[7] Texas A&M Univ, Hagler Inst Adv Study, Texas A&M AgriLife Res, IQSE, College Stn, TX 77843 USA
[8] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[9] German Aerosp Ctr DLR, Inst Quantum Technol, D-89069 Ulm, Germany
基金
以色列科学基金会;
关键词
ATOMIC INTERFEROMETRY; SPIN COHERENCE; HUMPTY-DUMPTY;
D O I
10.1103/PhysRevLett.123.083601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a unique matter-wave interferometer whose phase scales with the cube of the time the atom spends in the interferometer. Our scheme is based on a full-loop Stern-Gerlach interferometer incorporating four magnetic field gradient pulses to create a state-dependent force. In contrast to typical atom interferometers that make use of laser light for the splitting and recombination of the wave packets, this realization uses no light and can therefore serve as a high-precision surface probe at very close distances.
引用
收藏
页数:6
相关论文
共 33 条
[1]   A trapped ultracold atom force sensor with a μm-scale spatial resolution [J].
Alauze, X. ;
Bonnin, A. ;
Solaro, C. ;
Dos Santos, F. Pereira .
NEW JOURNAL OF PHYSICS, 2018, 20
[2]   Phase Shift in an Atom Interferometer due to Spacetime Curvature across its Wave Function [J].
Asenbaum, Peter ;
Overstreet, Chris ;
Kovachy, Tim ;
Brown, Daniel D. ;
Hogan, Jason M. ;
Kasevich, Mark A. .
PHYSICAL REVIEW LETTERS, 2017, 118 (18)
[3]   Direct Measurement of Intermediate-Range Casimir-Polder Potentials [J].
Bender, H. ;
Courteille, Ph. W. ;
Marzok, C. ;
Zimmermann, C. ;
Slama, S. .
PHYSICAL REVIEW LETTERS, 2010, 104 (08)
[4]  
Berman P.R., 1997, Atom Interferometry
[5]  
Bohm D., 1951, Quantum Theory, P604
[6]   ATOMIC INTERFEROMETRY WITH INTERNAL STATE LABELING [J].
BORDE, CJ .
PHYSICS LETTERS A, 1989, 140 (1-2) :10-12
[7]   Ion-trap measurements of electric-field noise near surfaces [J].
Brownnutt, M. ;
Kumph, M. ;
Rabl, P. ;
Blatt, R. .
REVIEWS OF MODERN PHYSICS, 2015, 87 (04)
[8]   Adsorbate Electric Fields on a Cryogenic Atom Chip [J].
Chan, K. S. ;
Siercke, M. ;
Hufnagel, C. ;
Dumke, R. .
PHYSICAL REVIEW LETTERS, 2014, 112 (02)
[9]   Optics and interferometry with atoms and molecules [J].
Cronin, Alexander D. ;
Schmiedmayer, Joerg ;
Pritchard, David E. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (03) :1051-1129
[10]   Continuous Cold-Atom Inertial Sensor with 1 nrad/ sec Rotation Stability [J].
Dutta, I. ;
Savoie, D. ;
Fang, B. ;
Venon, B. ;
Alzar, C. L. Garrido ;
Geiger, R. ;
Landragin, A. .
PHYSICAL REVIEW LETTERS, 2016, 116 (18)