Direct Growth of Si, Ge, and Si-Ge Heterostructure Nanowires Using Electroplated Zn: An Inexpensive Seeding Technique for Li-Ion Alloying Anodes

被引:25
作者
Kilian, Seamus [1 ,2 ]
McCarthy, Kieran [1 ,2 ]
Stokes, Killian [1 ,2 ]
Adegoke, Temilade Esther [1 ,2 ]
Conroy, Michele [1 ,3 ]
Amiinu, Ibrahim Saana [1 ,2 ]
Geaney, Hugh [1 ,2 ]
Kennedy, Tadhg [1 ,2 ]
Ryan, Kevin M. [1 ,2 ]
机构
[1] Univ Limerick, Bernal Inst, Limerick V94 T9PX, Ireland
[2] Univ Limerick, Dept Chem Sci, Limerick V94 T9PX, Ireland
[3] Univ Limerick, Dept Phys, Limerick V94 T9PX, Ireland
基金
爱尔兰科学基金会; 欧盟地平线“2020”;
关键词
axial heterostructures; electroplating; lithium-ion batteries; semiconductor nanowires; zinc seeds;
D O I
10.1002/smll.202005443
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A scalable and cost-effective process is used to electroplate metallic Zn seeds on stainless steel substrates. Si and Ge nanowires (NWs) are subsequently grown by placing the electroplated substrates in the solution phase of a refluxing organic solvent at temperatures >430 degrees C and injecting the respective liquid precursors. The native oxide layer formed on reactive metals such as Zn can obstruct NW growth and is removed in situ by injecting the reducing agent LiBH4. The findings show that the use of Zn as a catalyst produces defect-rich Si NWs that can be extended to the synthesis of Si-Ge axial heterostructure NWs with an atomically abrupt Si-Ge interface. As an anode material, the as grown Zn seeded Si NWs yield an initial discharge capacity of 1772 mAh g(-1) and a high capacity retention of 85% after 100 cycles with the active participation of both Si and Zn during cycling. Notably, the Zn seeds actively participate in the Li-cycling activities by incorporating into the Si NWs body via a Li-assisted welding process, resulting in restructuring the NWs into a highly porous network structure that maintains a stable cycling performance.
引用
收藏
页数:8
相关论文
共 65 条
[1]   Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study [J].
Baggetto, Loic ;
Notten, Peter H. L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (03) :A169-A175
[2]   Perpendicular growth of catalyst-free germanium nanowire arrays [J].
Barrett, Christopher A. ;
Geaney, Hugh ;
Gunning, Robert D. ;
Laffir, Fathima R. ;
Ryan, Kevin M. .
CHEMICAL COMMUNICATIONS, 2011, 47 (13) :3843-3845
[3]  
Calahorra Y, 2017, SCI REP-UK, V7, DOI [10.1038/s41598-017-04402-4, 10.1038/srep40891, 10.1038/s41598-017-14611-6]
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Enhanced Lithium Ion Battery Cycling of Silicon Nanowire Anodes by Template Growth to Eliminate Silicon Underlayer Islands [J].
Cho, Jeong-Hyun ;
Picraux, S. Tom .
NANO LETTERS, 2013, 13 (11) :5740-5747
[6]   Tin-Seeded Silicon Nanowires for High Capacity Li-Ion Batteries [J].
Chockla, Aaron M. ;
Klavetter, Kyle C. ;
Mullins, C. Buddie ;
Korgel, Brian A. .
CHEMISTRY OF MATERIALS, 2012, 24 (19) :3738-3745
[7]   Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries [J].
Chockla, Aaron M. ;
Bogart, Timothy D. ;
Hessel, Colin M. ;
Klavetter, Kyle C. ;
Mullins, C. Buddie ;
Korgel, Brian A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (34) :18079-18086
[8]   Silicon nanowire devices [J].
Chung, SW ;
Yu, JY ;
Heath, JR .
APPLIED PHYSICS LETTERS, 2000, 76 (15) :2068-2070
[9]   Defect Formation in Ga-Catalyzed Silicon Nanowires [J].
Conesa-Boj, Sonia ;
Zardo, Ilaria ;
Estrade, Sonia ;
Wei, Li ;
Alet, Pierre Jean ;
Roca i Cabarrocas, Pere ;
Morante, Joan R. ;
Peiro, Francesca ;
Fontcuberta i Morral, Anna ;
Arbiol, Jordi .
CRYSTAL GROWTH & DESIGN, 2010, 10 (04) :1534-1543
[10]   High performance silicon nanowire field effect transistors [J].
Cui, Y ;
Zhong, ZH ;
Wang, DL ;
Wang, WU ;
Lieber, CM .
NANO LETTERS, 2003, 3 (02) :149-152