Social Robot Detection Using RoBERTa Classifier and Random Forest Regressor with Similarity Analysis

被引:3
|
作者
Chen, Yeyang
Bouazizi, Mondher
Ohtsuki, Tomoaki
机构
来源
2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022) | 2022年
关键词
Social Media; Bot Detection; Similarity; Voting Classifier; Random Forest Regressor; RoBERTa;
D O I
10.1109/GLOBECOM48099.2022.10001445
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Twitter has skyrocketed over the past few years and has become a major social media platform. At the same time, the number of social robots on Twitter has also increased significantly. These bot accounts imitate the speeches of normal users to manipulate public opinions, affect the normal communication of users. Therefore, bot account detection came into being. Despite extensive research efforts, bots on Twitter are still evolving to evade detection. Most of the current bot detection methods have a single structure and cannot detect and identify different types of bot accounts well. In this paper, we propose a new system for social robot detection that uses a RoBERTa (Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach) classifier and a random forest regressor with similarity analysis. In particular, the system considers the similarity of tweets and uses a voting system in addition to a set of features extracted from the user profile information and the tweets themselves. We conduct experiments using the largest dataset of bots available and show that the accuracy of our system is up to 0.8588, which is higher than that of all the other baseline methods.
引用
收藏
页码:6433 / 6438
页数:6
相关论文
共 50 条
  • [21] Sleep Apnea Detection Using Wavelet Scattering Transformation and Random Forest Classifier
    Sharaf, Ahmed. I. I.
    ENTROPY, 2023, 25 (03)
  • [22] DDoS Detection Using Information Gain Feature Selection and Random Forest Classifier
    Mandala, Satria
    Ramadhan, Alvien Ihsan
    Rosalinda, Maya
    Zaki, Salim M.
    Weippl, Edgar
    2022 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBERNETICS TECHNOLOGY & APPLICATIONS (ICICYTA), 2022, : 294 - 299
  • [23] RIGHT VENTRICLE LANDMARK DETECTION USING MULTISCALE HOG AND RANDOM FOREST CLASSIFIER
    Sedai, Suman
    Roy, Pallab Kanti
    Garnavi, Rahil
    2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 814 - 818
  • [24] Outlier Prediction Using Random Forest Classifier
    Mohandoss, Divya Pramasani
    Shi, Yong
    Suo, Kun
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 27 - 33
  • [25] PREDICTION OF RESPONSES IN A CNC MILLING OPERATION USING RANDOM FOREST REGRESSOR
    Bhattacharya, Shibaprasad
    Chakraborty, Shankar
    FACTA UNIVERSITATIS-SERIES MECHANICAL ENGINEERING, 2023, 21 (04) : 685 - 700
  • [26] Hybrid Approach for Apple Fruit Diseases Detection and Classification Using Random Forest Classifier
    Samajpati, Bhavini J.
    Degadwala, Sheshang D.
    2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), VOL. 1, 2016, : 1015 - 1019
  • [27] Zero crossing point detection in a distorted sinusoidal signal using random forest classifier
    Veeramsetty, Venkataramana
    Jadhav, Pravallika
    Ramesh, Eslavath
    Srinivasula, Srividya
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (10) : 4806 - 4824
  • [28] Automated Mura Defect Detection System on LCD Displays using Random Forest Classifier
    Torres, Gustavo M.
    Souza, Adriana S.
    Ferreira, David A. O.
    Junior, Luiz C. S. G.
    Ouchi, Kethilen Y.
    Valadao, Myke D. M.
    Silva, Mateus O.
    Cavalcante, Victor L. G.
    Mattos, Edma V. C. U.
    Pereira, Antonio M. C.
    Cruz, Caio F. S.
    Silva, Agemilson P.
    Belem, Ruan J. S.
    Costa, Andre S.
    Evangelista, Lucas G. C.
    Junior, Wilson C. C.
    Paula, Ricardo G.
    Bezerra, Thiago B.
    Junior, Waldir S. S.
    Carvalho, Celso B.
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2021,
  • [29] De-Anonymizing Social Networks With Random Forest Classifier
    Ma, Jiangtao
    Qiao, Yaqiong
    Hu, Guangwu
    Huang, Yongzhong
    Sangaiah, Arun Kumar
    Zhang, Chaoqin
    Wang, Yanjun
    Zhang, Rui
    IEEE ACCESS, 2018, 6 : 10139 - 10150
  • [30] Analysis of Significant Factors for Dengue Infection Prognosis Using the Random Forest Classifier
    Fathima, A. Shameem
    Manimeglai, D.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2015, 6 (02) : 240 - 245