Conserved microRNAs and their targets in model grass species Brachypodium distachyon

被引:106
作者
Unver, Turgay [1 ,2 ]
Budak, Hikmet [1 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, Biol Sci & Bioengn Program, Istanbul, Turkey
[2] Kocaeli Univ, Arslanbey MYO, Izmit, Turkey
关键词
Brachypodium distachyon; MicroRNA; Stem-loop hairpin structure; Expressed sequence tag; Genomic survey sequence; Target mRNA; qRT-PCR; SHOOT APICAL MERISTEM; COMPUTATIONAL IDENTIFICATION; ARABIDOPSIS-THALIANA; PLANT MICRORNAS; TRANSCRIPTION FACTOR; FLORAL DEVELOPMENT; FAMILY-MEMBERS; GENES; EXPRESSION; CLEAVAGE;
D O I
10.1007/s00425-009-0974-7
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
MicroRNAs are small, non-protein-coding RNAs playing regulatory functions in many organisms. Using computational approaches 26 new Brachypodium distachyon miRNAs belonging to 19 miRNA families were identified in expressed sequence tags (EST) and genomic survey sequence databases. EST revealed that predicted miRNAs are expressed in B. distachyon. Detailed nucleotide analyses showed that pre-miRNAs in B. distachyon are in the range of 63-180 nucleotides. Mature miRNAs located in the different positions of precursor RNAs are varied from 19 to 24 nucleotides in length. Quantifying RNAs using realtime PCR (qRT-PCR) analyses validated expression level differences of selected B. distachyon miRNAs. In this study, we detected that the expression level of some of the predicted miRNAs are distinct and some of them are similar in the leaf tissues. In addition, using these miRNAs as queries 27 potential target mRNAs were predicted in B. distachyon NCBI EST database and 246 target mRNA were predicted in NCBI protein-coding nucleotide (mRNA) database of all plant species. The majority of the target mRNAs encode transcription factors regulating plant development, morphology and flowering time. Other newly identified miRNAs target the mRNAs involving metabolic processes, signal transduction and stress response.
引用
收藏
页码:659 / 669
页数:11
相关论文
共 52 条
[1]   Modulation of floral development by a gibberellin-regulated microRNA [J].
Achard, P ;
Herr, A ;
Baulcombe, DC ;
Harberd, NP .
DEVELOPMENT, 2004, 131 (14) :3357-3365
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[4]   MicroRNA binding sites in Arabidopsis class IIIHD-ZIP mRNAs are required for methylation of the template chromosome [J].
Bao, N ;
Lye, KW ;
Barton, MK .
DEVELOPMENTAL CELL, 2004, 7 (05) :653-662
[5]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[6]   Detection of 91 potential in plant conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes [J].
Bonnet, E ;
Wuyts, J ;
Rouzé, P ;
Van de Peer, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (31) :11511-11516
[7]   A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis [J].
Cai, Xiaoning ;
Ballif, Jenny ;
Endo, Saori ;
Davis, Elizabeth ;
Liang, Mingxiang ;
Chen, Dong ;
DeWald, Daryll ;
Kreps, Joel ;
Zhu, Tong ;
Wu, Yajun .
PLANT PHYSIOLOGY, 2007, 145 (01) :98-105
[8]   Role of microRNAs in plant and animal development [J].
Carrington, JC ;
Ambros, V .
SCIENCE, 2003, 301 (5631) :336-338
[9]   Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of MicroRNA in host gene expression [J].
Chen, J ;
Li, WX ;
Xie, DX ;
Peng, JR ;
Ding, SW .
PLANT CELL, 2004, 16 (05) :1302-1313
[10]   A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development [J].
Chen, XM .
SCIENCE, 2004, 303 (5666) :2022-2025