The Ainf-cohomology in the semistable case

被引:13
作者
Cesnavicius, Kestutis [1 ]
Koshikawa, Teruhisa [2 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, Lab Math Orsay, CNRS,UMR 8628, F-91405 Orsay, France
[2] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
关键词
comparison isomorphism; integral cohomology; p-adic Hodge theory; SEMI-STABLE REDUCTION; ETALE; COHOMOLOGY; VARIETIES;
D O I
10.1112/S0010437X1800790X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a proper, smooth scheme X over a p-adic fi eld K, we show that any proper, flat, semistable O-K-model X of X whose logarithmic de Rham cohomology is torsion free determines the same O-K-lattice inside H-dR(i) (X/K) and, moreover, that this lattice is functorial in X. For this, we extend the results of Bhatt-Morrow-Scholze on the construction and the analysis of an Ainf-valued cohomology theory of p-adic formal, proper, smooth O (K) over bar -schemes X to the semistable case. The relation of the A(inf)-cohomology to the p-adic etale and the logarithmic crystalline cohomologies allows us to reprove the semistable conjecture of Fontaine-Jannsen.
引用
收藏
页码:2039 / 2128
页数:90
相关论文
共 48 条
[1]  
[Anonymous], 2018, CAMBRIDGE STUDIES AD
[2]  
[Anonymous], ELEMENTS MATH ALGEBR
[3]  
ARTIN M., 1972, LECT NOTES MATH, V270, DOI DOI 10.1007/BFB0061319
[4]  
Beilinson A, 2013, CAMB J MATH, V1, P1
[5]   p-ADIC PERIODS AND DERIVED DE RHAM COHOMOLOGY [J].
Beilinson, A. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 25 (03) :715-738
[6]  
Beilinson A., 2013, PREPRINT
[7]  
BEILINSON AA, 1982, ASTERISQUE, P7
[8]  
Bhatt B., 2012, PREPRINT
[9]  
Bhatt B., 2018, PREPRINT
[10]   Specializing varieties and their cohomology from characteristic 0 to characteristic p [J].
Bhatt, Bhargav .
ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 2, 2018, 97 :43-88