On Coupling a Lumped Parameter Heart Model and a Three-Dimensional Finite Element Aorta Model

被引:248
作者
Kim, H. J. [2 ]
Vignon-Clementel, I. E. [3 ]
Figueroa, C. A. [1 ]
LaDisa, J. F. [4 ]
Jansen, K. E. [5 ,6 ]
Feinstein, J. A. [1 ,7 ]
Taylor, C. A. [1 ,7 ,8 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] INRIA, F-78153 Le Chesnay, France
[4] Marquette Univ, Dept Biomed Engn, Olin Engn Ctr, Milwaukee, WI 53233 USA
[5] Rensselaer Polytech Inst, Sci Computat Res Ctr, Troy, NY 12180 USA
[6] Rensselaer Polytech Inst, Dept Mech Aeronaut & Nucl Engn, Troy, NY 12180 USA
[7] Stanford Univ, Dept Pediat, Stanford, CA 94305 USA
[8] Stanford Univ, Dept Surg, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Blood flow; Time varying elastance function; Coupled multidomain method; NAVIER-STOKES EQUATIONS; BLOOD-FLOW; ARTERIAL COMPLIANCE; PRESSURE; HEMODYNAMICS; MECHANICS; ANEURYSMS; EXERCISE; HUMANS; SYSTEM;
D O I
10.1007/s10439-009-9760-8
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Aortic flow and pressure result from the interactions between the heart and arterial system. In this work, we considered these interactions by utilizing a lumped parameter heart model as an inflow boundary condition for three-dimensional finite element simulations of aortic blood flow and vessel wall dynamics. The ventricular pressure-volume behavior of the lumped parameter heart model is approximated using a time varying elastance function scaled from a normalized elastance function. When the aortic valve is open, the coupled multidomain method is used to strongly couple the lumped parameter heart model and three-dimensional arterial models and compute ventricular volume, ventricular pressure, aortic flow, and aortic pressure. The shape of the velocity profiles of the inlet boundary and the outlet boundaries that experience retrograde flow are constrained to achieve a robust algorithm. When the aortic valve is closed, the inflow boundary condition is switched to a zero velocity Dirichlet condition. With this method, we obtain physiologically realistic aortic flow and pressure waveforms. We demonstrate this method in a patient-specific model of a normal human thoracic aorta under rest and exercise conditions and an aortic coarctation model under pre- and post-interventions.
引用
收藏
页码:2153 / 2169
页数:17
相关论文
共 39 条
[1]   Energetically optimal left ventricular pressure for the failing human heart [J].
Asanoi, H ;
Kameyama, T ;
Ishizaka, S ;
Nozawa, T ;
Inoue, H .
CIRCULATION, 1996, 93 (01) :67-73
[2]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259
[3]  
Cebral JR, 2005, AM J NEURORADIOL, V26, P2550
[4]  
Danielsen M., 2004, Applied mathematical Models in Human Physiology - A Cardiovascular Model
[5]   A coupled momentum method for modeling blood flow in three-dimensional deformable arteries [J].
Figueroa, C. Alberto ;
Vignon-Clementel, Irene E. ;
Jansen, Kenneth E. ;
Hughes, Thomas J. R. ;
Taylor, Charles A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (41-43) :5685-5706
[6]   On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels [J].
Formaggia, L ;
Gerbeau, JF ;
Nobile, F ;
Quarteroni, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 191 (6-7) :561-582
[7]  
Formaggia Luca, 2006, Computer Methods in Biomechanics and Biomedical Engineering, V9, P273, DOI 10.1080/10255840600857767
[8]   STABILIZED FINITE-ELEMENT METHODS .2. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
FRANCA, LP ;
FREY, SL .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 99 (2-3) :209-233
[9]  
Heywood JG, 1996, INT J NUMER METH FL, V22, P325, DOI 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO
[10]  
2-Y