Point disclinations in the Chern-Simons geometric theory of defects

被引:6
|
作者
Katanaev, M. O. [1 ,2 ]
Volkov, B. O. [1 ,3 ]
机构
[1] Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
[2] Kazan Fed Univ, NI Lobachevsky Inst Math & Mech, Kremlevskaya St 18, Kazan 420008, Russia
[3] State Univ, Moscow Inst Phys & Technol, Inst Skii Per 9, Dolgoprudnyi 141700, Moscow Oblast, Russia
来源
MODERN PHYSICS LETTERS B | 2020年 / 34卷
关键词
Disclination; geometric theory of defects; Chern-Simons action; DISLOCATIONS;
D O I
10.1142/S0217984921500123
中图分类号
O59 [应用物理学];
学科分类号
摘要
We use the Chern-Simons action for a SO(3)-connection for the description of point disclinations in the geometric theory of defects. The most general spherically symmetric SO(3)-connection with zero curvature is found. The corresponding orthogonal spherically symmetric SO(3) matrix and n-field are computed. Two examples of point disclinations are described.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Chern-Simons term in the geometric theory of defects
    Katanaev, M. O.
    PHYSICAL REVIEW D, 2017, 96 (08)
  • [2] Chern-Simons Action and Disclinations
    Katanaev, M. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 301 (01) : 114 - 133
  • [3] CHERN-SIMONS THEORY AND GEOMETRIC REGULARIZATION
    ASOREY, M
    FALCETO, F
    PHYSICS LETTERS B, 1990, 241 (01) : 31 - 36
  • [4] Maxwell Chern-Simons theory in a geometric representation
    Leal, L
    Zapata, O
    PHYSICAL REVIEW D, 2001, 63 (06)
  • [5] What Chern-Simons theory assigns to a point
    Henriques, Andre G.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (51) : 13418 - 13423
  • [6] Semilocal Chern-Simons defects
    Fuertes, WG
    Guilarte, JM
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (02) : 554 - 566
  • [7] Holographic Chern-Simons defects
    Fujita, Mitsutoshi
    Melby-Thompson, Charles M.
    Meyer, Rene
    Sugimoto, Shigeki
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (06):
  • [8] Holographic Chern-Simons defects
    Mitsutoshi Fujita
    Charles M. Melby-Thompson
    René Meyer
    Shigeki Sugimoto
    Journal of High Energy Physics, 2016
  • [9] GEOMETRIC-QUANTIZATION OF CHERN-SIMONS GAUGE-THEORY
    AXELROD, S
    DELLAPIETRA, S
    WITTEN, E
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 33 (03) : 787 - 902
  • [10] Geometric aspects of interpolating gauge fixing in Chern-Simons Theory
    Gallot, Laurent
    Mathieu, Philippe
    Pilon, Eric
    Thuillier, Frank
    MODERN PHYSICS LETTERS A, 2018, 33 (02)