Identification of finite dimensional models of infinite dimensional dynamical systems

被引:72
|
作者
Coca, D [1 ]
Billings, SA [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
system identification; infinite dimensional systems; finite elements; nonlinear systems; partial differential equations; parameter estimation;
D O I
10.1016/S0005-1098(02)00099-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The identification of finite dimensional discrete-time models of deterministic linear and nonlinear infinite dimensional systems from pointwise observations is investigated. The input and output observations are used to construct finite dimensional approximations of the solution and the forcing function which are expanded in terms of a finite element basis. An algorithm to determine a minimal basis to approximate the data is introduced. Subsequently, the resulting coordinate vectors are used to identify a finite dimensional discrete-time model, Theoretical results concerning the existence, stability and convergence of the finite dimensional representation are established. Numerical results involving identification of finite dimensional models for both linear and nonlinear infinite dimensional systems are presented. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1851 / 1865
页数:15
相关论文
共 50 条
  • [1] Finite order representations of infinite dimensional bilinear models of nonlinear systems
    Starkl, R
    del Re, L
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 131 - 136
  • [2] Adaptive identification of linear infinite-dimensional systems
    Chattopadhyay, Sudipta
    Sukumar, Srikant
    Natarajan, Vivek
    INTERNATIONAL JOURNAL OF CONTROL, 2025, 98 (03) : 593 - 608
  • [3] Centre manifolds for infinite dimensional random dynamical systems
    Chen, Xiaopeng
    Roberts, Anthony J.
    Duan, Jinqiao
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2019, 34 (02): : 334 - 355
  • [4] Chaos for some infinite-dimensional dynamical systems
    Rudnicki, R
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (06) : 723 - 738
  • [5] FINITE-DIMENSIONAL APPROXIMATIONS OF UNSTABLE INFINITE-DIMENSIONAL SYSTEMS
    GU, G
    KHARGONEKAR, PP
    LEE, EB
    MISRA, P
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (03) : 704 - 716
  • [6] Finite/Fixed-Time Homogeneous Stabilization of Infinite Dimensional Systems
    Polyakov, Andrey
    Orlov, Yury
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (04) : 2560 - 2567
  • [7] Controllability of Switched Infinite-dimensional Linear Dynamical Systems
    Klamka, Jerzy
    Niezabitowski, Michal
    2014 19TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2014, : 171 - 175
  • [8] Robustness of exponential dichotomies in infinite-dimensional dynamical systems
    Pliss V.A.
    Sell G.R.
    Journal of Dynamics and Differential Equations, 1999, 11 (3) : 471 - 513
  • [9] On-line parameter estimation for infinite-dimensional dynamical systems
    Baumeister, J
    Scondo, W
    Demetriou, MA
    Rosen, IG
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (02) : 678 - 713
  • [10] ON THE OSELEDETS-SPLITTING FOR INFINITE-DIMENSIONAL RANDOM DYNAMICAL SYSTEMS
    Lu, Kening
    Neamtu, Alexandra
    Schmalfuss, Bjoern
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (03): : 1219 - 1242