UNITARY OPERATORS, ENTANGLEMENT, AND GRAM-SCHMIDT ORTHOGONALIZATION

被引:0
作者
Hardy, Yorick [1 ]
Steeb, Willi-Hans [1 ]
机构
[1] Univ Johannesburg, Int Sch Sci Comp, Johannesburg, South Africa
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2009年 / 20卷 / 06期
关键词
Unitary transformation; Hilbert space; modified Gram-Schmidt orthonormalization technique; Bell states; Symbolic C plus; W-STATE;
D O I
10.1142/S0129183109014060
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider finite-dimensional Hilbert spaces H with dim(H) = n with n >= 2 and unitary operators. In particular, we consider the case n = 2(m), where m >= 2 in order to study entanglement of states in these Hilbert spaces. Two normalized states psi and phi in these Hilbert spaces H are connected by a unitary transformation (n x n unitary matrices), i.e. psi = U phi, where U is a unitary operator UU* = I. Given the normalized states psi and phi, we provide an algorithm to find this unitary operator U for finite-dimensional Hilbert spaces. The construction is based on a modified Gram-Schmidt orthonormalization technique. A number of applications important in quantum computing are given. Symbolic C++ is used to give a computer algebra implementation in C++.
引用
收藏
页码:891 / 899
页数:9
相关论文
共 10 条
[1]  
[Anonymous], 1994, Elementary Linear Algebra
[2]  
COFFMAN V, 2000, PHYS REV A, V61, P2245
[3]  
D'Hondt E, 2006, QUANTUM INF COMPUT, V6, P173
[4]  
HARDY Y, 2008, COMPUTER ALBEBRA SYM
[5]   Quantum teleportation via a W state -: art. no. 136 [J].
Joo, J ;
Park, YJ ;
Oh, S ;
Kim, J .
NEW JOURNAL OF PHYSICS, 2003, 5 :136.1-136.9
[6]  
Nielsen M. A., 2000, Quantum Computation and Quantum Information
[7]  
Steeb W.-H., 2006, Problems and solutions in quantum computing and quantum information, V2nd
[8]  
Steeb W-H., 1998, Hilbert spaces, wavelets, generalised functions, and modern quantum mechanics
[9]   Quantum gates and Hamilton operators [J].
Steeb, Willi-Hans ;
Hardy, Yorick .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2006, 45 (05) :953-961
[10]   Entanglement of formation of an arbitrary state of two qubits [J].
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1998, 80 (10) :2245-2248