Statistical characterization of semi-supervised neural networks for fault detection and diagnosis of air handling units
被引:56
作者:
Fan, Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Sino Australia Joint Res Ctr BIM & Smart Construc, Shenzhen, Peoples R China
Shenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R ChinaShenzhen Univ, Sino Australia Joint Res Ctr BIM & Smart Construc, Shenzhen, Peoples R China
Fan, Cheng
[1
,2
]
Liu, Xuyuan
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Sino Australia Joint Res Ctr BIM & Smart Construc, Shenzhen, Peoples R China
Shenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R ChinaShenzhen Univ, Sino Australia Joint Res Ctr BIM & Smart Construc, Shenzhen, Peoples R China
Liu, Xuyuan
[1
,2
]
Xue, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Beijing Key Lab Green Built Environm & Energy Eff, Beijing, Peoples R ChinaShenzhen Univ, Sino Australia Joint Res Ctr BIM & Smart Construc, Shenzhen, Peoples R China
Xue, Peng
[3
]
Wang, Jiayuan
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Sino Australia Joint Res Ctr BIM & Smart Construc, Shenzhen, Peoples R China
Shenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R ChinaShenzhen Univ, Sino Australia Joint Res Ctr BIM & Smart Construc, Shenzhen, Peoples R China
Wang, Jiayuan
[1
,2
]
机构:
[1] Shenzhen Univ, Sino Australia Joint Res Ctr BIM & Smart Construc, Shenzhen, Peoples R China
[2] Shenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R China
[3] Beijing Univ Technol, Beijing Key Lab Green Built Environm & Energy Eff, Beijing, Peoples R China
Semi-supervised learning;
Air handling units;
Fault detection and diagnosis;
Artificial neural networks;
Machine learning;
D O I:
10.1016/j.enbuild.2021.110733
中图分类号:
TU [建筑科学];
学科分类号:
0813 ;
摘要:
Air handling units have been widely adopted in modern buildings for indoor air regulation and circulation tasks. The accurate and reliable fault detection and diagnosis (FDD) of air handling units (AHU) are of great significance to maintain indoor environment while ensuring the energy efficiency in building operations. Data-driven FDD approaches have gained great popularity due to their excellence and flexibilities for practical applications. Given sufficient labeled data, existing studies have validated the value of various supervised learning algorithms for FDD tasks. However, it can be very challenging, expensive, time-consuming and labor-intensive to obtain data labels for faulty operations, making it impractical to fully realize the potential of advanced supervised learning algorithms. To tackle this problem, this study proposes a novel semi-supervised FDD method using neural networks. The method adopts the self-training strategy for semi-supervised learning and has been tested for two practical applications, i.e., fault diagnosis and unseen fault detection. A number of data experiments have been conducted to statistically characterize the influence of key learning parameters, including the labeled data availabilities, the maximum semi-supervised learning iterations, the threshold and learning rate for pseudo-label data utilization. The results indicate that the method can effectively enhance model generalization performance by utilizing large amounts of unlabeled data. The insights obtained are helpful for developing advanced data-driven tools for smart building system fault detection and diagnosis. (C) 2021 Elsevier B.V. All rights reserved.
机构:
Univ Teknol Malaysia, Fac Comp, Dept Software Engn, Software Engn Res Grp, Utm Johor Bahru 81310, Johor, MalaysiaUniv Teknol Malaysia, Fac Comp, Dept Software Engn, Software Engn Res Grp, Utm Johor Bahru 81310, Johor, Malaysia
Abaei, Golnoush
;
Selamat, Ali
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Fac Comp, Dept Software Engn, Software Engn Res Grp, Utm Johor Bahru 81310, Johor, MalaysiaUniv Teknol Malaysia, Fac Comp, Dept Software Engn, Software Engn Res Grp, Utm Johor Bahru 81310, Johor, Malaysia
机构:
Shenzhen Univ, Coll Civil & Transportat Engn, Sinoaustralia Joint Res Ctr BIM & Smart Construct, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Civil & Transportat Engn, Sinoaustralia Joint Res Ctr BIM & Smart Construct, Shenzhen, Peoples R China
Fan, Cheng
;
Yan, Da
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Sch Architecture, Bldg Energy Res Ctr, Beijing, Peoples R ChinaShenzhen Univ, Coll Civil & Transportat Engn, Sinoaustralia Joint Res Ctr BIM & Smart Construct, Shenzhen, Peoples R China
Yan, Da
;
Xiao, Fu
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Bldg Serv Engn, Hong Kong, Peoples R ChinaShenzhen Univ, Coll Civil & Transportat Engn, Sinoaustralia Joint Res Ctr BIM & Smart Construct, Shenzhen, Peoples R China
Xiao, Fu
;
Li, Ao
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Bldg Serv Engn, Hong Kong, Peoples R ChinaShenzhen Univ, Coll Civil & Transportat Engn, Sinoaustralia Joint Res Ctr BIM & Smart Construct, Shenzhen, Peoples R China
Li, Ao
;
论文数: 引用数:
h-index:
机构:
An, Jingjing
;
Kang, Xuyuan
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Sch Architecture, Bldg Energy Res Ctr, Beijing, Peoples R ChinaShenzhen Univ, Coll Civil & Transportat Engn, Sinoaustralia Joint Res Ctr BIM & Smart Construct, Shenzhen, Peoples R China
机构:
Univ Teknol Malaysia, Fac Comp, Dept Software Engn, Software Engn Res Grp, Utm Johor Bahru 81310, Johor, MalaysiaUniv Teknol Malaysia, Fac Comp, Dept Software Engn, Software Engn Res Grp, Utm Johor Bahru 81310, Johor, Malaysia
Abaei, Golnoush
;
Selamat, Ali
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Fac Comp, Dept Software Engn, Software Engn Res Grp, Utm Johor Bahru 81310, Johor, MalaysiaUniv Teknol Malaysia, Fac Comp, Dept Software Engn, Software Engn Res Grp, Utm Johor Bahru 81310, Johor, Malaysia
机构:
Shenzhen Univ, Coll Civil & Transportat Engn, Sinoaustralia Joint Res Ctr BIM & Smart Construct, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Civil & Transportat Engn, Sinoaustralia Joint Res Ctr BIM & Smart Construct, Shenzhen, Peoples R China
Fan, Cheng
;
Yan, Da
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Sch Architecture, Bldg Energy Res Ctr, Beijing, Peoples R ChinaShenzhen Univ, Coll Civil & Transportat Engn, Sinoaustralia Joint Res Ctr BIM & Smart Construct, Shenzhen, Peoples R China
Yan, Da
;
Xiao, Fu
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Bldg Serv Engn, Hong Kong, Peoples R ChinaShenzhen Univ, Coll Civil & Transportat Engn, Sinoaustralia Joint Res Ctr BIM & Smart Construct, Shenzhen, Peoples R China
Xiao, Fu
;
Li, Ao
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Bldg Serv Engn, Hong Kong, Peoples R ChinaShenzhen Univ, Coll Civil & Transportat Engn, Sinoaustralia Joint Res Ctr BIM & Smart Construct, Shenzhen, Peoples R China
Li, Ao
;
论文数: 引用数:
h-index:
机构:
An, Jingjing
;
Kang, Xuyuan
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Sch Architecture, Bldg Energy Res Ctr, Beijing, Peoples R ChinaShenzhen Univ, Coll Civil & Transportat Engn, Sinoaustralia Joint Res Ctr BIM & Smart Construct, Shenzhen, Peoples R China