Autoregressive order selection for irregularly sampled data

被引:1
作者
Broersen, Piet M. T. [1 ]
机构
[1] Delft Univ Technol, Dept Multi Scale Phys, NL-2600 GA Delft, Netherlands
来源
2006 IEEE Instrumentation and Measurement Technology Conference Proceedings, Vols 1-5 | 2006年
关键词
autoregressive model; nearest neighbor resampling; slotting; spectral estimation; time series analysis; uneven sampling; order selection; parametric model;
D O I
10.1109/IMTC.2006.328303
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
An autoregressive (AR) spectral estimator is investigated that applies the principles of a discrete-time automatic equidistant missing data algorithm to unevenly spaced data. This time series estimator approximates irregular data by a number of resampled missing data sets, with a special multi-shifi slotted nearest neighbor method. It uses a slot width that is a fraction of the resampling time step. Unfortunately, resampling always causes bias. The ARMAsel-irreg algorithm estimates AR models and selects the order from a number of candidates. The order selection criterion selects the best approximation of the biased spectrum. The bias causes AR poles at higher frequencies and the selected model can have spurious high frequency poles, incompatible with the continuous character of the irregularly sampled signal.
引用
收藏
页码:1004 / 1009
页数:6
相关论文
共 12 条
[1]  
[Anonymous], 1987, Experiments in Fluids
[2]   Estimation of turbulent velocity spectra from laser Doppler data [J].
Benedict, LH ;
Nobach, H ;
Tropea, C .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2000, 11 (08) :1089-1104
[3]  
Broersen P.M., 2006, Automatic Autocorrelation and Spectral Analysis
[4]   Autoregressive spectral analysis when observations are missing [J].
Broersen, PMT ;
de Waele, S ;
Bos, R .
AUTOMATICA, 2004, 40 (09) :1495-1504
[5]   Application of autoregressive spectral analysis to missing data problems [J].
Broersen, PMT ;
de Waele, S ;
Bos, R .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2004, 53 (04) :981-986
[6]  
BROERSEN PMT, IN PRESS IEEE T INST
[7]   Estimation of turbulence power spectra for bubbly flows from laser Doppler Anemometry signals [J].
Harteveld, WK ;
Mudde, RF ;
Van den Akker, HEA .
CHEMICAL ENGINEERING SCIENCE, 2005, 60 (22) :6160-6168
[8]   MAXIMUM-LIKELIHOOD FITTING OF ARMA MODELS TO TIME-SERIES WITH MISSING OBSERVATIONS [J].
JONES, RH .
TECHNOMETRICS, 1980, 22 (03) :389-395
[9]  
JONES RH, 1981, APPLIED TIME SERIES, V2, P651
[10]  
Lahalle E., 2004, Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510), P923, DOI 10.1109/IMTC.2004.1351213