Propagation dynamics of abruptly autofocusing circular Airy Gaussian vortex beams in the fractional Schrodinger equation

被引:60
作者
He, Shangling [1 ]
Malomed, Boris A. [2 ,3 ,4 ]
Mihalache, Dumitru [5 ]
Peng, Xi [6 ]
Yu, Xing [1 ]
He, Yingji [6 ]
Deng, Dongmei [1 ]
机构
[1] South China Normal Univ, Guangdong Prov Key Lab Nanophoton Funct Mat & Dev, Guangzhou 510631, Peoples R China
[2] Tel Aviv Univ, Fac Engn, Dept Phys Elect, Sch Elect Engn, IL-69978 Tel Aviv, Israel
[3] Tel Aviv Univ, Ctr Light Matter Interact, IL-69978 Tel Aviv, Israel
[4] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
[5] Horia Hulubei Natl Inst Phys & Nucl Engn, POB MG-6, RO-077125 Bucharest, Romania
[6] Guangdong Polytech Normal Univ, Sch Photoelect Engn, Guangzhou 510665, Peoples R China
基金
以色列科学基金会; 中国国家自然科学基金;
关键词
Fractional diffraction effect; Airy-Gaussian vortex beams; Self-focusing effect;
D O I
10.1016/j.chaos.2020.110470
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce axisymmetric Airy-Gaussian vortex beams in a model of an optical system based on the (2+1)-dimensional fractional Schrodinger equation (FSE), characterized by its Levy index (LI), 1 < alpha <= 2. By means of numerical methods, we explore propagation dynamics of the beams with vorticities from 0 to 4. The propagation leads to abrupt autofocusing, followed by its reversal (rebound from the center). It is shown that LI, the relative width of the Airy and Gaussian factors, and the vorticity determine properties of the autofocusing dynamics, including the focusing distance, radius of the focal light spot, and peak intensity at the focus. A maximum of the peak intensity is attained at intermediate values of LI, close to alpha = 1.4. Dynamics of the abrupt autofocusing of Airy-Gaussian beams carrying vortex pairs (split double vortices) is considered too. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 47 条
  • [1] Abdelkawy MA, 2020, ROM REP PHYS, V72
  • [2] [Anonymous], 2001, FRACTIONAL CALCULUS
  • [3] Propagation of sharply autofocused ring Airy Gaussian vortex beams
    Chen, Bo
    Chen, Chidao
    Peng, Xi
    Peng, Yulian
    Zhou, Meiling
    Deng, Dongmei
    [J]. OPTICS EXPRESS, 2015, 23 (15): : 19288 - 19298
  • [4] Fourier-space generation of abruptly autofocusing beams and optical bottle beams
    Chremmos, Ioannis
    Zhang, Peng
    Prakash, Jai
    Efremidis, Nikolaos K.
    Christodoulides, Demetrios N.
    Chen, Zhigang
    [J]. OPTICS LETTERS, 2011, 36 (18) : 3675 - 3677
  • [5] Pre-engineered abruptly autofocusing beams
    Chremmos, Ioannis
    Efremidis, Nikolaos K.
    Christodoulides, Demetrios N.
    [J]. OPTICS LETTERS, 2011, 36 (10) : 1890 - 1892
  • [6] Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics
    Chremmos, Ioannis D.
    Chen, Zhigang
    Christodoulides, Demetrios N.
    Efremidis, Nikolaos K.
    [J]. PHYSICAL REVIEW A, 2012, 85 (02):
  • [7] Concentrating standing waves for the fractional nonlinear Schrodinger equation
    Davila, Juan
    del Pino, Manuel
    Wei, Juncheng
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (02) : 858 - 892
  • [8] Abruptly autofocusing vortex beams
    Davis, Jeffrey A.
    Cottrell, Don M.
    Sand, David
    [J]. OPTICS EXPRESS, 2012, 20 (12): : 13302 - 13310
  • [9] Inversion and tight focusing of Airy pulses under the action of third-order dispersion
    Driben, Rodislav
    Hu, Yi
    Chen, Zhigang
    Malomed, Boris A.
    Morandotti, Roberto
    [J]. OPTICS LETTERS, 2013, 38 (14) : 2499 - 2501
  • [10] Accelerating and abruptly autofocusing matter waves
    Efremidis, Nikolaos K.
    Paltoglou, Vassilis
    von Klitzing, Wolf
    [J]. PHYSICAL REVIEW A, 2013, 87 (04):